文章编号:1000-7032(2023)03-0387-26

# 稀土掺杂铅卤钙钛矿发光、光电材料与器件研究进展

宋宏伟\*,周东磊\*,白 雪,徐 文,董 彪,徐 琳 (吉林大学电子科学与工程学院,吉林长春 130012)

**摘要:**铅卤化物钙钛矿作为一类新兴的光电子材料表现出了卓越的光学、电学性能,在太阳能电池、发光二极 管、光电探测器以及激光等领域产生了广泛而重要的应用,引起万众瞩目。稀土是元素周期表里一类特殊材 料,从57号到71号元素,具有4f<sup>an</sup>4f<sup>a-1</sup>5d电子组态。如果将稀土和钙钛矿材料以及器件相结合,会孕育出怎 样的新生儿呢?本文旨在结合作者在相关领域开展的工作及取得的经验,简单梳理该领域近年来取得的进 展,剖析未来所面临的问题和挑战。本文不以总结纷繁复杂的个性化现象为要扼,而以探讨具有普遍意义的 共性问题为宗旨。在资料选取上,或许失之偏颇,有严重的"王婆卖瓜"之嫌,请读者慎思明辨。

**关 键 词:**稀土发光;铅卤化物钙钛矿;光电探测器;太阳能电池 中图分类号: 0482.31 **文献标识码:** A **DOI**: 10.37188/CJL.20220391

# Advances in Rare Earth Doped Lead Halide Perovskite Luminescence, Optoelectronic Materials and Devices

SONG hongwei<sup>\*</sup>, ZHOU donglei<sup>\*</sup>, BAI Xue, XU Wen, DONG Biao, XU Lin (College of Electronic Science and Engineering, Jilin University, Changchun 130012, China) \* Corresponding Authors, E-mail: songhw@ilu. edu. cn; zhoudl@ilu. edu. cn

**Abstract:** Lead halide perovskite, as a new class of optoelectronic materials, has demonstrated excellent optical and electrical properties, extensive and important applications in solar cells, light-emitting diodes, photodetectors, lasers and so on, attracting great attention. Rare earth is a special kind of material in the periodic table of elements, ranging the elements from 57 to 71, with 4f<sup>a</sup> and 4f<sup>a-1</sup>5d electronic configurations. What kind of new baby will be born if rare earth combines with perovskite materials and devices? This paper aims to combine the author's work and experience in related fields, briefly review the progress made in this field in recent years, and search for the problems and challenges faced in the future. This article is not to summarize the complex individual phenomenon to be brief, but to explore the common problems of universal significance for the purpose. In the selection of data and information, it may be biased, and there is a serious suspicion of "Every potter praises his pot", please think carefully.

Key words: rare earth luminescence; lead halide perovskite; photodetectors; solar cells

1引言

我们现在要探讨的铅卤化物钙钛矿材料用一个统一的分子式来表达,可以写为*APbX*<sub>3</sub>。其中*A* 

位的原子既可以是一价的第一主族原子 K<sup>+</sup>、Na<sup>+</sup>、 Li<sup>+</sup>、Rb<sup>+</sup>、Cs<sup>+</sup>(以Cs为代表),又可以是一些一价的 有机官能团,如MA<sup>+</sup>、FA<sup>+</sup>等;X则是卤族元素 F、 Cl、Br、I的统称,这是一类具有卓越物理性能的光

收稿日期: 2022-11-16;修订日期: 2022-12-13

基金项目:国家科技部重点专项(2021YFB3500400);吉林省省校共建计划专项(SXGJXX2017-3);吉林省自然科学基金(202513JC010277746, 20190201307JC)

Supported by The National Key R&D Program of China(2021YFB3500400); The Special Project of The Province-University Coconstructing Program of Jilin Province(SXGJXX2017-3); Jilin Province Natural Science Foundation of China(202513JC010277746, 20190201307JC)

电材料。如果更广义地谈论钙钛矿,则不得不提 到自然界当中存在的一类氧化物矿石, CaTiO<sub>3</sub>。 这种材料由来已久,是1839年由俄罗斯化学家古 斯塔夫·罗斯(Gustav·Rose)在乌拉尔山脉最早发 现的,比门捷列夫发现元素周期律还早了30年,是以 俄罗斯贵族列夫・佩罗夫斯基(Lev·Perovskite)的名 字命名的,所以钙钛矿的英文名字叫Perovskite。 恐怕 Gustav 也没曾想到大约 200 年前的发现,会 是下一个太阳能电池革命的关键吧。2009年,日 本科学家 Tsutmus Miyasaka 最早报道了基于有机 铅卤钙钛矿的太阳能电池,光电效率仅为3.8%<sup>[1]</sup>。 2012年,英国牛津大学的 Henry Snaith 取得了突 破性进展,将铅卤钙钛矿太阳能电池的效率提升 到15%以上,远远超过了比它发展时间更长的有 机太阳能电池和染料敏化太阳能电池,被评选为 2013年的全球十大科学进展之一[2]。2022年,在 短短十几年的时间里,单结钙钛矿太阳电池的效 率已经提升到了 25.7%<sup>[3]</sup>, 而基于钙钛矿与 Si 电 池的杂化电池器件,效率已经超过了31%;基于钙 钛矿的叠层电池,效率超过了27%[45]。铅卤钙钛 矿材料具有吸收截面大、光谱响应范围宽、波长易 于调控、载流子迁移率高等优点,同时也可以实现 柔性器件以及低温廉价的光伏器件制备。受钙钛 矿电池迅速发展的启发与激励,钙钛矿量子点发 光方面的研究也取得了惊人的进展。在发光方 面,钙钛矿量子点材料拥有窄的谱线宽度、高的发 光量子效率、可调控的发射波长和大的色域范围, 因此成为高分辨信息显示领域的新宠。无机铅卤 钙钛矿量子点的发光是2015年最初报道的6,迄 今为止,所报道的红、绿、蓝等不同颜色的光致发 光外量子效率均已超过90%<sup>[7-10]</sup>,基于CsPbBr3绿 光发射的电光转换效率已经达到23.4%[11-13],基 于CsPbI,量子点红光发射的器件外量子效率也超 过了20%[14-16]。此外,在光电检测和激光应用等方 面,铅卤钙钛矿材料也表现出了卓尔不群的非凡 才能[17-19]。

尽管如此,铅卤钙钛矿材料也不是尽善尽美的。首先,由于铅卤钙钛矿能带的限制,这类材料的发射波长一般在400~800 nm范围内,难于实现 更短波与更长波范围的发射。其次,铅卤钙钛矿 材料在结构稳定性、光照稳定性和水氧稳定性等 方面,与实现各种实际应用还有很大的距离。稀 土是自然界里存在的一类重要的元素,稀土离子 具有 4f<sup>\*\*1</sup>5d电子组态,由此产生了丰富的跃 迁,可以覆盖从深紫外到中红外的光谱范围,同时 也赋予了它窄谱线、长寿命、大 Stokes 位移等发光 学特征,是照明与显示家族里最古典美女之一。 那么,如果让稀土这位古典美女与钙钛矿这个现 代土豪相结合,会产生什么样的遗传学奇效呢? 2017年,我们在国际上最早报道了 CsPbCl<sub>3</sub>: *RE* (稀土)量子点的发光,观察到了来自稀土离子和 钙钛矿激子的"双壁"发光<sup>[20]</sup>,成为稀土与钙钛矿 结合最初的见证者之一。现在,5年的时间过去 了,这种结合在哪些方面给人们制造了惊喜呢? 本篇综述将从量子点发光、太阳能电池和光电探 测器应用等三个角度来进行介绍。

## 2 稀土掺杂铅卤素钙钛矿量子点、 薄膜发光

#### 2.1 稀土掺杂铅卤钙钛矿的光致发光

2017年,本课题组报道了热注入法制备的  $CsPbCl_3: RE(RE=Ce^{3+}, Tb^{3+}, Eu^{3+}, Pr^{3+}, Er^{3+}, Tm^{3+}, Yb^{3+})$ 系列稀土掺杂钙钛矿量子点的发光(图1(a))<sup>[20]</sup>: 2018年,唐江课题组报道了CsPbBr<sub>3</sub>:Eu<sup>3+</sup>量子点 的光致发光(图1(b))<sup>[21]</sup>,曾海波课题组报道了  $CsPbBr_3: Ce^{3+}$ 量子点的光致与电致发光(图1(c)), 这些工作成为稀土掺杂铅卤钙钛矿发光最早的报 道<sup>[22]</sup>。此后,一些稀土离子掺杂的CsPbI<sub>3</sub>基发光 材料也相继被报道,如CsPbI3: Pr3+[23-24]。总体来 说,在各种掺杂钙钛矿量子点发光材料中,以稀土 掺杂 CsPbCl<sub>3</sub>量子点发光材料最具有代表性。首 先,我们需要清楚一个最基本的问题,在稀土掺杂 钙钛矿材料中,稀土离子占据怎样的晶格位置? 为此,我们根据第一性原理对稀土离子在钙钛矿 晶格中三种可能的占据位置进行了理论计算,包 括替代 Pb<sup>2+</sup>位、替代 Cs<sup>+</sup>位以及占据间隙的位置。 计算结果表明,当稀土离子替代Pb<sup>2+</sup>的位置时,势 能最低,说明RE3+离子倾向于占据Pb2+的格位(图 1(d))。 这一理论预测也得到了 XPS 等结构表征 手段的支持。因为RE3+稀土离子的半径小于Pb2+ 的离子半径,稀土离子的引入会导致钙钛矿晶格 间距变小,同时在材料成核过程中尺寸略有收缩。 这种变化是随着镧系元素原子序数的增大而呈现 周期律的变化的<sup>[20]</sup>。

CsPbCl<sub>3</sub>: *RE* 量子点发光最典型的特征就是 呈现钙钛矿激子与稀土离子 4f-4f 或 4f-5d 跃迁的 双色发射(图1(a))。通过不同稀土离子的选择, 其发射可以在紫外到近红外的范围内进行调控, 为拓展铅卤钙钛矿材料的光学性能提供了新视 角。在各种不同的基质材料中,CsPbCl<sub>3</sub>量子点最 容易实现对稀土离子的有效掺杂以及稀土离子跃 迁,这主要是CsPbCl<sub>3</sub>的能带更宽,可以使稀土离 子的分立能级处于钙钛矿的能带间隙,产生跃迁。 在最初的工作中,CsPbCl<sub>3</sub>:*RE*中稀土离子的发光 总的量子效率一般可达到为30%~40%,比非掺杂 CsPbCl<sub>3</sub>量子点的效率提高了接近一个数量级,激 子跃迁的发射效率也有所提升。这主要是引入稀 土离子之后,钙钛矿材料中的非辐射俘获中心减 少所导致的<sup>[20,25]</sup>。后来,针对一些具有可见发射的 离子,通过合成方法与组分的调控,如Sm<sup>3+</sup>、Eu<sup>3+</sup> 发射的离子,光致发光的外量子效率可以达到 80%以上<sup>[26]</sup>。另外,研究表明,在CsPbBr<sub>3</sub>和CsPbI<sub>3</sub> 量子点中,通过掺杂或者利用稀土离子进行表面 修饰可以大幅度提高其激子发射的量子效率,同 时也可以改善量子点材料的结构稳定性<sup>[27-28]</sup>。稀 土离子掺杂的钙钛矿不仅仅可以产生可见发射, 也可以产生红外发射,除Yb<sup>3+</sup>的<sup>7</sup>F<sub>5/2</sub>-<sup>7</sup>F<sub>7/2</sub>跃迁外, 一些其他离子的红外发射,如Er<sup>3+</sup>的1540 nm发



图 1 (a)稀土离子掺杂 CsPbCl<sub>3</sub>钙钛矿纳米晶的发射谱<sup>[20]</sup>;(b)CsPbBr<sub>3</sub>:Eu<sup>3+</sup>的吸收谱(红线)和发射谱(黑线)<sup>[21]</sup>;(c)未掺 杂 CsPbBr<sub>3</sub>和 Ce<sup>3+</sup>掺杂 CsPbBr<sub>3</sub>的电致发光光谱及其对应的光致发光发射光谱<sup>[22]</sup>;(d)La<sub>Pb</sub>、La<sub>i</sub>和 La<sub>Cs</sub>的形成能(ΔH) 随费米能级的变化;(e)CsEuCl<sub>3</sub>的激发谱(蓝线)和发射谱(红线)<sup>[31]</sup>;(f) 365 nm 紫外光激发下,CsEuBr<sub>3</sub>晶体在室温 下的光致发光谱<sup>[32]</sup>。

Fig. 1 (a) The emission spectra of rare earth ion-doped CsPbCl<sub>3</sub> perovskite nanocrystals<sup>[20]</sup>. (b) Absorption spectrum (red line) and emission spectrum (black line) of CsPbBr<sub>3</sub>: Eu<sup>3+[21]</sup>. (c) Electroluminescence spectra of undoped CsPbBr<sub>3</sub> and Ce<sup>3+</sup>-doped CsPbBr<sub>3</sub> and their corresponding photoluminescence emission spectra<sup>[22]</sup>. (d) The formation energy ( $\Delta H$ ) of La<sub>Pb</sub>  $\lambda$  La<sub>i</sub> and La<sub>Cs</sub> with Fermi energy level. (e) Excitation spectrum (blue line) and emission spectrum (red line) of CsEuCl<sub>3</sub><sup>[31]</sup>. (f) Photoluminescence spectrum of CsEuBr<sub>3</sub> crystals at room temperature under 365 nm UV excitation<sup>[32]</sup>.

射、Pr<sup>3+</sup>的1300 nm 发射,都可以实现;其发光量 子效率可以达到30%~40%,在光通讯、第二生物 窗口成像等领域展示了广阔的应用前景<sup>[29-30]</sup>。

除了稀土掺杂钙钛矿之外,基于稀土作为主体的钙钛矿材料最近也得到了一些研究,如杨培东课题组所报道的CsEuCl<sub>3</sub>材料,其蓝光发射归因于自由载流子的复合;唐江课题组报道了CsEuBr<sub>3</sub>材料,观察到440~450 nm的蓝光发射(图1(e)~

(f)),将其主要归因于二价 Eu离子的 d-f 跃迁<sup>[31-32]</sup>。 事实上,系统的研究表明,这类材料的蓝光发射位 置几乎不会随着稀土离子的改变和阴离子的变化 而产生显著的变化,尽管材料的带隙已经发生了 大幅度的改变。因此,该类材料的发光不仅与激 子跃迁相关,而且可能与表面配体的影响有很大 的关联,其发光机理尚待深入揭示<sup>[33]</sup>。关于稀土 离子掺杂钙钛矿发光材料的典型例子见表1。

| Tab. 1 Typical examples of fare cartin for doped perovskite fullinescent mate | . materia | ninescent mater | iuminescent ma | lumine | rovskite | opea pe | ion ( | earth | rare | es or | example | pical | I y | ab. 1 | L |
|-------------------------------------------------------------------------------|-----------|-----------------|----------------|--------|----------|---------|-------|-------|------|-------|---------|-------|-----|-------|---|
|-------------------------------------------------------------------------------|-----------|-----------------|----------------|--------|----------|---------|-------|-------|------|-------|---------|-------|-----|-------|---|

| 年四   | 激发波长/ | 定十                                                                                   | 按九卤乙                                             | DI OV/0/                | 激子寿命/   | 稀土寿命/                        | 能量传递  | 参考   |
|------|-------|--------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|---------|------------------------------|-------|------|
| 平切   | nm    | 1日 土                                                                                 | 1275 1                                           | FLQ1/%                  | ns      | μs                           | 效率/%  | 文献   |
| 2018 | 365   | $\mathrm{CsPbBr}_{2.54}\mathrm{Cl}_{0.46}$                                           | Eu <sup>3+</sup>                                 | 89.90                   | _       | _                            | _     | [34] |
| 2021 | 350   | $\rm NMA_2PbBr_4$                                                                    | $Eu^{3+}$                                        | 9.00                    | —       | —                            | —     | [35] |
| 2021 | 335   | $\mathrm{Cs}_{2}\mathrm{NaEr}_{\mathrm{1-x}}\mathrm{In}_{x}\mathrm{Cl}_{\mathrm{6}}$ | $\mathrm{Er}^{3+}$                               | 0.26                    | —       | 119.1                        | —     | [36] |
| 2022 | 280   | $Cs_3TbCl_6$                                                                         | $\mathrm{Tb}^{3+}$                               | 43.34                   | 2.16    | 5 530                        | —     | [27] |
| 2022 | 350   | $Cs_3EuCl_6$                                                                         | $Eu^{3+}$                                        | 54.16                   | 25.79   | 3 990                        | —     | [37] |
| 2022 | 355   | CsMnBr <sub>3</sub>                                                                  | $Md^{3+}$ , $Tm^{3+}$ ,<br>$Yb^{3+}$ , $Er^{3+}$ | 0.41,0.63,<br>1.10,0.24 | 235 000 | 810, 730, 1 400<br>Nd,Yb, Tm | _     | [38] |
| 2020 | 350   | $\mathrm{CsPbCl}_3$                                                                  | $\mathrm{Yb}^{3+}/\mathrm{Er}^{3+}$              | 6.00                    | —       | 790,2760                     | 54.40 | [39] |
| 2019 | 365   | $\mathrm{Cs}_{2}\mathrm{AgBi}X_{6}$                                                  | $Yb^{3+}/Mn^{2+}$                                | _                       | 26      | 1 440 Yb                     | —     | [40] |
| 2019 | 375   | $CsPb(Cl_{1-x}Br_x)_3$                                                               | $\mathrm{Yb}^{3+}$                               | —                       | —       | —                            | —     | [41] |
| 2018 | 365   | $CsPbX_3(X=Cl, Br, I)$                                                               | $Yb^{3+}/Mn^{2+}$                                | —                       | —       | _                            | —     | [42] |
| 2023 | 365   | $\mathrm{CsPbCl}_3$                                                                  | $Yb^{3+}/Er^{3+}$                                | 30.12                   | _       | 621                          | 63.55 | [43] |

目前,掺杂钙钛矿量子点方面的研究还有待 深入。最初的研究是在一大片荒野上的圈地运动,而现在的研究应该采取钻井式的深入挖掘。 如何减少非辐射复合中心并实现钙钛矿基质向稀 土离子有效的能量传递,从而获得高效率的稀土 离子发光,依然应该是该领域的主题。通过对钙 钛矿材料尺寸、结构、维度和缺陷态的调控以及对 每一种稀土离子个性化的设计策略,相信在这一 片土地上,我们还会找到丰富的宝藏。因为我们 以往揭示的只是冰山上的一角而已。

#### 2.2 量子剪裁发光

量子剪裁发光是一种特殊形式的光致发光, 它是指材料吸收一个高频光子,通过级联发射或 者两步能量传递过程产生两个低频发射光子的过 程<sup>[44]</sup>。这个概念由来已久,是由理论物理学家 Dexter上世纪50年代提出的<sup>[45]</sup>,70年代光谱物理 学家在实验上观察到了稀土离子Pr<sup>3+</sup>的量子剪裁 发光现象,开启了研究的大门<sup>[46-47]</sup>。2003年, Trupke进行了量子剪裁发光材料应用于太阳能电 池的理论预测<sup>[48]</sup>,诱导了基于Yb<sup>3+</sup>离子的红外量 子剪裁发光研究的发展。一些文献对相关领域取 得的进展进行了详尽的综述,我们在一篇最近发 表在J. Rare. Earth的应约综述中,出于自我歌颂 的目的,也给稀土掺杂钙钛矿量子剪裁发光材料 "树了碑,立了传"<sup>[49]</sup>。相关的内容也写进了由 Prof. XiaoJun Wang 和 Rushi Liu 主编的英文版教 科书<sup>[50]</sup>。在这里,我再简单地"鼓噪"一下,以示 尤敬。

稀土掺杂的铅卤化物钙钛矿量子剪裁发光材 料是我们课题组2017年最早报道的,在CsPbCl<sub>3</sub>: Yb<sup>3+</sup>和CsPbCl<sub>1.5</sub>Br<sub>1.5</sub>:Yb<sup>3+</sup>,Ce<sup>3+</sup>纳米晶中,均获得 了实际量子效率高于100%的量子剪裁发光(图 2(a)~(b))<sup>[25]</sup>。在后续的研究中,我们又通过组分 的优化和稀土离子的共掺杂,相继获得了量子效 率173%和188%的量子剪裁发光材料(图2(c)~ (d))<sup>[29]</sup>,CsPbClBr<sub>2</sub>:Ce<sup>3+</sup>,Pr<sup>3+</sup>,Yb<sup>3+</sup>和CsPbCl<sub>3</sub>:Cr<sup>3+</sup>, Ce<sup>3+</sup>,Yb<sup>3+[29,50]</sup>。我们同时开展了太阳能电池应用 方面的研究。通过将量子剪裁荧光材料自组装在 第3期



图 2 (a)各种 Yb<sup>3+</sup>掺杂钙钛矿量子点的吸收光谱(左)、可见发射光谱(中)和近红外发射光谱(右)(365 nm 光激 发);(b)不同稀土离子与 Yb<sup>3+</sup>共掺杂 CsPbCl<sub>1.5</sub>Br<sub>1.5</sub>钙钛矿量子点的吸收光谱(左)、可见发射光谱(中)和近红 外发射光谱(右)(365 nm 光激发)<sup>[25]</sup>;(c)365 nm 光激发下,CsPbCl<sub>3</sub>Br<sub>3</sub>I<sub>3-x-y</sub>:Yb<sup>3+</sup>,Ln<sup>3+</sup>(Ln=Nd,Dy,Tb,Pr,Ce) 钙钛矿量子点的 PLQYs<sup>[29]</sup>;(d)在 355 nm 光的激发下,CsPbCl<sub>3</sub>:Cr<sup>3+</sup>,Cr<sup>3+</sup>-Yb<sup>3+</sup>及 Cr<sup>3+</sup>-Yb<sup>3+</sup>-Ce<sup>3+</sup> 钙钛矿量子点的 PLQYs<sup>[50]</sup>;(e)当扫描速度为0.1 V·s<sup>-1</sup>时,不同钙钛矿膜厚度的 SSCs 的 *I*-V最佳曲线<sup>[25]</sup>;(f)未涂/涂有 CsPbClBr<sub>2</sub>:Yb<sup>3+</sup> (6%)-Pr<sup>3+</sup>(4%)-Ce<sup>3+</sup>(3%)的硅太阳能电池的 *I*-V曲线<sup>[29]</sup>;(g)不同[Yb<sup>3+</sup>]:[Cs<sup>+</sup>]比值的近红外 PLQYs;(h)激子 (空心)和近红外(实心)的 PLQYs 随 Yb<sup>3+</sup>浓度变化的函数<sup>[52]</sup>;(i)CsPbCl<sub>3</sub>:Cr<sup>3+</sup>,Yb<sup>3+</sup>,Ce<sup>3+</sup> 钙钛矿量子点的光电 流随时间的变化曲线<sup>[50]</sup>。

Fig. 2 (a) Absorption spectra(left), visible emission spectra(middle) and near-infrared emission spectra(right) of Yb<sup>3+</sup>-doped chalcogenide quantum dots (365 nm optical excitation). (b) Absorption spectra(left), visible emission spectra(middle) and near-infrared emission spectra (right) of CsPbCl<sub>1.5</sub>Br<sub>1.5</sub> perovskite quantum dots co-doped with different rare earth ions and Yb<sup>3+</sup>(365 nm photoexcitation)<sup>[25]</sup>. (c) PLQYs of CsPbCl<sub>3</sub>Br<sub>y</sub>I<sub>3-x-y</sub>: Yb<sup>3+</sup>, *Ln*<sup>3+</sup>(*Ln*=Nd, Dy, Tb, Pr, Ce) perovskite quantum dots under 365 nm light excitation<sup>[29]</sup>. (d) PLQYs of CsPbCl<sub>3</sub>: Cr<sup>3+</sup>, Cr<sup>3+</sup>-Yb<sup>3+</sup>, and Cr<sup>3+</sup>-Yb<sup>3+</sup>-Ce<sup>3+</sup> perovskite quantum dots under 355 nm light excitation<sup>[50]</sup>. (e) The best *I-V* curves of SSCs with different calcium titanite film thicknesses when the scanning speed is 0.1 V · s<sup>-1[25]</sup>. (f) *I-V* curves of silicon solar cells uncoated/coated with CsPbClBr<sub>2</sub>: Yb<sup>3+</sup> (6%)-Pr<sup>3+</sup>(4%)-Ce<sup>3+</sup>(3%)<sup>[29]</sup>. (g) NIR PLQYs with different [Yb<sup>3+</sup>]: [Cs<sup>+</sup>] ratios. (h) Exciton(hollow) and NIR (solid) PLQYs as a function of Yb<sup>3+</sup> concentration<sup>[52]</sup>. (i) CsPbCl<sub>3</sub>: Cr<sup>3+</sup>, Yb<sup>3+</sup>, Ce<sup>3+</sup> photocurrent curves of chalcogenide quantum dots as a function of time<sup>[40]</sup>.

商用晶硅太阳能电池的表面,并适当调控荧光转 换层的厚度(~230 nm),使晶硅太阳能电池的光 电转换效率由18.1%提高到21.5%,相对提高 18.8% (图2(e))。后来,我们又进一步使晶硅电 池和CIGS电池的效率提升达到了3.8%和4.1%, 相对提升程度超过20%(图2(f)),远远超过以往 量子剪裁及其他荧光下转移材料应用于提升硅电 池效率的文献报道[49-50]。这种量子剪裁荧光材料 也可以与硅探测器结合,拓展硅探测器的光电响 应范围,使其短波探测波长拓展到200 nm,且在 探测能力方面与可见光区域的响应能力不遑多 让<sup>[50]</sup>。与此同时,美国华盛顿Gamelin研究组也迅 速跟进,开展了相关的研究。他们通过合成方法 的调控,在CsPbCl3:Yb3+量子点和薄膜材料中,均 获得了量子效率接近200%的量子剪裁发光材料 (图2(g)~(h))<sup>[41,51-52]</sup>。同时,他们也通过泵浦探测 超快过程的研究和发光过程随泵浦功率的演化, 开展了量子剪裁发光机理的研究,并对量子剪裁 材料在太阳能电池中的应用进行了理论计算。这 些研究诱使 Yb3+离子掺杂钙钛矿发光方面的研究 成为掺杂钙钛矿材料研究中的前沿与热点。2019 年,Science杂志对量子剪裁应用于提升硅太阳能 电池的效率进行了亮点报道,认为钙钛矿的量子 剪裁发光与硅电池的结合是"完美的结合","这是 长期以来所能看到的最令人振奋的结果之一"[53]。 Gamelin的研究工作获得了美国日报的报道和美 国能源部的奖项,并成立了蓝光量子点公司推进 其产业化进程。

事实上,Yb<sup>3+</sup>掺杂的铅卤化物钙钛矿量子点 之所以在实际应用中取得意想不到的惊人效果, 不仅仅与其理想的实际发光内量子效率有关 (~200%);更为重要的是,这类材料结合了钙钛 矿材料高的吸收截面、锐的低能吸收截止边及与 硅太阳能电池相匹配的宽带激发光谱(300~450 nm)以及钙钛矿激子向Yb<sup>3+</sup>离子有效的能量转移 过程等诸多优点。宽的激发谱带和高的吸收截面 可以确保在数百纳米的厚度下,就可以产生对相 应激发波长光子的有效利用;锐的低能吸收截止 边可以避免在非荧光转换波长的光学损耗。铅卤 化物钙钛矿量子点可以通过调控卤素的元素比例 实现对带隙的调控,从而获得与硅太阳能电池完 全互补的光吸收,进一步减少了光损耗。钙钛矿 激子向Yb<sup>3+</sup>离子的能量传递过程是量子剪裁过 程,其理论量子效率可以达到200%,从而保证了 高效的光转换。因此,Yb<sup>3\*</sup>掺杂的铅卤化物钙钛 矿量子点不仅实现了与硅电池的精准光谱匹配, 发光高效,而且对可见光的损耗降到了最低,所以 在实际应用中获得了非常好的效果。

需要指出的是,现有的基于 CsPbCl<sub>3</sub>: Yb<sup>3+</sup>量 子剪裁发光材料太阳能电池,在一般的实验室温 度与湿度条件下(温度25 °C,湿度25%)保持0.5~1年 左右的时间后,仍能维持初始效率的90%左右 (图 2(i))<sup>[50]</sup>;为了促进量子剪裁荧光材料未来商 业化的进程,稳定性的问题还需进一步解决,尤其 是荧光转换层表面疏水特性的调控。另外,我们 也可以通过掺杂、半导体杂化等手段,进一步调控 和提高铅卤钙钛矿材料的吸收截面,实现在太阳 能电池应用中更大程度的光电转换效率增强。

#### 2.3 电致发光

基于稀土掺杂铅卤化物的电致发光器件研 究,目前报道的结果还不是很多,这主要有两个方 面的原因:其一,虽然很多种稀土离子掺杂的铅卤 钙钛矿都可以实现钙钛矿激子和稀土离子的双色 发光,但在大多数材料中,总的光致发光的量子 效率并不高,尤其是,由于钙钛矿向稀土的能量传 递过程不是十分有效,在一般的连续光泵浦下,稀 土离子在双色发光中的贡献度较低;换言之,钙钛 矿向稀土离子的能量传递不大有效<sup>[20]</sup>。其二,稀 土离子的发光寿命为毫秒量级,比钙钛矿激子的 寿命长了5~6个数量级。这意味着,它的辐射跃 迁速率比钙钛矿激子跃迁小了5~6个数量级。在电 致发光中,由于Auger过程的加剧,非辐射跃迁速 率相对于光致发光中的过程会大幅度提高,这就 导致稀土发光完全猝灭。所幸采用一些稀土掺杂 钙钛矿材料已经实现了电致发光,这可以给我们 未来工作很大的启示。迄今,已经实现电致发光 的可见发射稀土离子有 Sm<sup>3+</sup>、Eu<sup>3+</sup>,红外发射稀土 离子有 Yb<sup>3+</sup>和 Er<sup>3+</sup>,基质材料都是 CsPbCl<sub>3</sub><sup>[26]</sup>。

首先,要获得高效的稀土离子发射,就要实现 钙钛矿晶格中稀土离子有效的掺杂。事实上,在 传统的采用热注入法合成稀土掺杂量子点的过程 中,稀土离子是过量引入的,既未保证稀土化合物 材料有效溶解,也未保证其有效进入钙钛矿晶格。 在合成 CsPbCl<sub>3</sub>: Sm<sup>3+</sup>量子点的过程中,我们通过 引入少量的乙醇,增加了反应溶液对 SmCl<sub>3</sub>的溶 解度和与表面配体间的配位,从而能够使更多的 Sm<sup>3+</sup>进入钙钛矿的晶格并占据铅的格位。如此获得的稀土掺杂CsPbCl<sub>3</sub>:Sm<sup>3+</sup>量子点,发光量子效率可以达到85%,且发光的颜色可以根据Sm<sup>3+</sup>的颜色进行调控(图3(a)~(b))。在此基础上,我们采用反型器件结构,获得了基于Sm<sup>3+</sup>离子的电致发光。在电致发光中,其颜色也是可以通过稀土离子的浓度进行调控的,可以实现单一钙钛矿材

料的白色发光,也可以实现红色发光(图3(c))。 在白光器件中,根据光谱分解的结果,蓝光成分来 自于钙钛矿激子跃迁,红光发射来自于Sm<sup>3+</sup>的跃 迁,而绿光发射的贡献则主要来自钙钛矿缺陷态 的发射<sup>[26]</sup>。最优器件发光外量子效率为1.2%,亮 度可达到1000 cd/cm<sup>2</sup>,是报道时单一基质白光器 件的最好水平(图3(d)~(e))。



- 图 3 (a) 365 nm 激发下,不同掺杂浓度的 Sm<sup>3+</sup>掺杂 CsPbCl<sub>3</sub>纳米晶的发射光谱;(b)不同 Sm<sup>3+</sup>离子掺杂浓度的 PLQY;(c) 基于不同掺杂浓度的 Sm<sup>3+</sup>掺杂 CsPbCl<sub>3</sub>纳米晶的钙钛矿 LED 的 CIE 坐标;(d)~(e) 基于 5.1% Sm<sup>3+</sup>掺杂 CsPbCl<sub>3</sub>纳米 晶的电流密度、亮度和 EQE-*J* 曲线<sup>[26]</sup>;(f) 随着 K<sup>+</sup>离子浓度增加,CsPbCl<sub>3</sub>: Eu<sup>3+</sup>的能带隙和相应的 PLQY;(g)未加 CP 和加 CP 处理的纳米晶胶体溶液和相应薄膜的 PLQY;(h) 基于 Eu<sup>3+</sup>、K<sup>+</sup>共掺 CsPbCl<sub>3</sub>的 LED 结构示意图;(i)~(j) 基于 3.5% Eu<sup>3+</sup>离子掺杂浓度的 LED 的 电流密度、亮度和 EQE-*V* 曲线<sup>[54]</sup>。
- Fig. 3 (a) Emission spectra of Sm<sup>3+</sup>-doped CsPbCl<sub>3</sub> nanocrystals with different doping concentrations under 365 nm excitation.
  (b) PLQY with different Sm<sup>3+</sup> ion doping concentrations. (c) CIE coordinates of perovskite LEDs based on Sm<sup>3+</sup>-doped CsPbCl<sub>3</sub> nanocrystals with different doping concentrations. (d)-(e) Current density, brightness and EQE-*J* curves based on 5.1% Sm<sup>3+</sup>-doped CsPbCl<sub>3</sub> nanocrystals<sup>[26]</sup>. (f) As the concentration of K<sup>+</sup> ions increases, the energy band gap of CsPb-Cl<sub>3</sub>: Eu<sup>3+</sup> and the corresponding PLQY. (g) PLQY of nanocrystalline colloidal solutions and corresponding films without and with CP treatment. (h) Schematic diagram of the LED structure based on Eu<sup>3+</sup>, K<sup>+</sup> co-doped with CsPbCl<sub>3</sub>. (i)-(j) Current density, brightness and EQE-*V* curves of LEDs based on 3.5% Eu<sup>3+</sup> ion doping concentration<sup>[54]</sup>.

除了有效掺杂之外,钙钛矿激子与稀土离子 间有效的能量传递还要满足Föster-Dexter理论, 即给体与受体光谱交叠的条件<sup>[54]</sup>。在一般的CsPbCl<sub>3</sub>: Eu<sup>3+</sup>纳米晶中,激子的发射跃迁波长约为408 nm, 与 Eu<sup>3+</sup>的高能激发态匹配程度较差(主要产生匹配的能级为<sup>5</sup>D<sub>3</sub>能级),所以 Eu<sup>3+</sup>的发射相对贡献较小。为了调控钙钛矿激子发射的位置,使其 与<sup>7</sup>F<sub>0</sub>-<sup>5</sup>L<sub>6</sub>产生光谱交叠(中心发射波长 394 nm),我们在钙钛矿量子点中引入 K<sup>+</sup>离子。研究表明,适量 K<sup>+</sup>离子的引入可以产生阳离子的替代(替代Pb 位和 Cs 位),使晶格常数变小,能带变宽,从而导致激子发射蓝移,与<sup>7</sup>F<sub>0</sub>-<sup>5</sup>L<sub>6</sub>跃迁更加匹配。通过这种策略,我们获得了具有高效 Eu<sup>3+</sup>离子红光<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>J</sub>发射的量子点发光材料,最佳光致发光量子效率达到 79%(图 3(f))。在制备薄膜的过程中,我们引入表面螯合剂提高结晶质量,减少缺陷态对发光的影响(图 3(g))。采用其作为光发射层制备的电致发光器件,外量子效率可以达到 5.4%, 亮度可以达到 1 678 cd/m<sup>2</sup> (图 3(h)~(j))<sup>[54]</sup>。

CsPbCl<sub>3</sub>: Yb<sup>3+</sup>的发光可以达到接近 200% 的 光致发光量子效率。Ishii采用一步法制备了高效 的CsPbCl<sub>3</sub>:Yb<sup>3+</sup>,并进一步采用反型结构制备了 电致发光器件,器件的中心发射波长为988 nm的 近红外发射,外量子效率可以达到5.9%,输出功率 为3100 µW·cm<sup>-2[55]</sup>。Er<sup>3+</sup>的1540 nm 近红外发光可 以在此基础上通过Yb3\*向Er3\*的能量传递来实现。 最近,我们课题组制备了CsPbCl<sub>3</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>钙钛 矿薄膜,通过调控Yb3+离子和Er3+离子的浓度,获 得了80%的总发光量子效率,其中Er<sup>3+</sup>的发光量 子效率约为30%。采用反型器件结构制备了电致 发光器件,发射波长主要集中在1540 nm,外量子 效率约为0.386%,输出功率密度可以达到120 μW。这是首次将稀土掺杂钙钛矿电致发光的波 长拓展到光通讯的中心窗口区域。其发光量子效 率和输出功率远远高于以往报道的基于 Er<sup>3+</sup>的稀 土配合物电致发光器件[56-57]。总之,稀土离子在钙 钛矿中有效的掺杂、激子与稀土离子间高效的能 量传递和抑制非辐射复合是获得电致发光的基 础。稀土掺杂钙钛矿电致发光器件的研究仅仅是 个开始,但是在电泵的白光发射光源和红外发射 光源方面,已经露出了尖尖角。目前,稀土掺杂器 件在电光转换效率方面,还无法和非掺杂器件相 媲美;由于离子迁移等共性的问题,器件的稳定性 也尚待提高。随着研究的深入,器件的优化设计 将使电致发光的效率和稳定性都得到提升。

#### 2.4 压力发光

根据晶体场理论,一些稀土离子的发光光谱

随稀土离子占据的格位对称性而产生变化,如 Stark 劈裂数量不同、谱线位置移动等,是研究物 质局域环境的敏感探针。其中,Eu<sup>3+</sup>离子的<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>J</sub> 跃迁(J=0~6)是作为探针发光理想的选择之一<sup>[57]</sup>。 <sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>0</sub>跃迁是电偶极跃迁,在任何晶场环境下都 不产生劈裂。根据J-O理论,稀土离子的电偶极 跃迁在一般条件下是禁戒的,只有当稀土离子占 据非反演对称中心的格位时,才能够产生发射。 而<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>1</sub>跃迁是磁偶极跃迁,最多可以劈裂为3 条谱线;磁偶极跃迁不依赖于晶场环境。所以, <sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>0</sub><sup>6</sup>D<sub>0</sub>-<sup>7</sup>F<sub>1</sub>荧光分支 比意味着较低的局域对称性和由于对称性破缺所 产生的更大幅度的电偶极跃迁。

我们课题组与吉林大学刘冰冰教授课题组合 作,共同研究了在高压之下 CsPbCl<sub>3</sub>: Eu<sup>3+</sup>的结构 和荧光变化行为[49]。在压力光谱中,既可以观察 到钙钛矿激子的发射,又可以观察到 $Eu^{3+}b^{5}D_{0}-^{7}F_{1}$ 特征发射(图4(a))。有趣的是,激子的发射随着 压力增大到1.4 GPa时,就几乎完全消失。而Eu<sup>3+</sup> 的<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>1</sub>发光,在20 GPa的高压下依然存在,成为 "永不消逝的电波"。总体而言,在逐渐向钙钛矿 施压的过程中,CsPbCl。钙钛矿量子点经历了两次 相变,第一次相变(0~1.4 GPa)由本征 I 相到本征 Ⅱ相的转变,第二次相变(1.4~10 GPa)由Ⅱ相向 不定型相的转变。在这个过程中,钙钛矿的晶格 逐渐呈现短程有序、长程无序的特征(图4(b))。 在整个结构变化的过程中,钙钛矿的晶格常数呈 现先收缩而后膨胀的趋势。Eu3+的5D0-7F1总体发 射强度先是随着压力的增加而增大,而后随着材 料结构向不定型相的演化,总体荧光强度才逐渐 下降。根据综合研究和理论计算的结果, Eu<sup>3+</sup>的 发射强度增强主要是由于在压力作用下钙钛矿激 子向 Eu<sup>3+</sup>更为有效的能量传递。根据 Föster-Dexter理论,施主向受主的能量传递过程会受到施主 中心的发射光谱与受主中心激发光谱的交叠程度 以及施主与受主之间的间距等因素的影响。CsPbCla: Eu<sup>3+</sup>未施压时的激子跃迁在408 nm 左右,这个发 射位置与Eu<sup>3+</sup>的高能激发态(<sup>5</sup>D<sub>3</sub>)的匹配程度不是 很好(中心激发波长~394 nm),所以能量传递效 率较低。随着压力的最初增长,钙钛矿的晶格常 数逐渐收缩(图4(c)),CsPbCl<sub>3</sub>的能带逐渐增大, 导致激子发射光谱向短波方向移动,使得<sup>7</sup>F<sub>0</sub>-<sup>5</sup>D<sub>3</sub>



图 4 (a)不同压力下, Eu<sup>3+</sup>掺杂 CsPbCl<sub>3</sub>量子点的发射光谱; (b)同步 X 射线衍射图样的强度等值线图; (c)室温下晶格常数随压力的变化; (d)不同压力下, Eu<sup>3+</sup>的<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>J</sub>(J=0~4)能级跃迁的发射光谱; (e)Eu<sup>3+</sup>掺 CsPbCl<sub>3</sub>量子点对 360 nm 紫外光的光电流随压力的变化<sup>[58]</sup>。

Fig.4 (a) Emission spectra of  $Eu^{3+}$ -doped CsPbCl<sub>3</sub> quantum dots at different pressures. (b) Intensity contour plots of simultaneous X-ray diffraction patterns. (c) Variation of lattice constant with pressure at room temperature. (d) Emission spectra of  ${}^{5}D_{0}-{}^{7}F_{J}(J=0-4)$  energy level jumps of  $Eu^{3+}$  at different pressures. (e) Pressure dependence of photocurrent in  $Eu^{3+}$ -doped CsPbCl<sub>3</sub> quantum dots for 360 nm UV light<sup>[58]</sup>.

激发跃迁与激子发射跃迁的匹配程度更好,激 子态向 Eu<sup>3+</sup>的能量传递过程更为高效,所以激子 发射强度逐渐减小,而 Eu<sup>3+</sup>的<sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>J</sub>发射逐渐增 强。同时,随着压力增大,施主与受主离子之间的 间距变小,对能量传递速率也有一定的促进作 用。在 CsPbCl<sub>3</sub>量子点发生相变的整个过程中, <sup>5</sup>D<sub>0</sub>-<sup>7</sup>F<sub>0</sub><sup>6</sup>D<sub>0</sub>-<sup>7</sup>F<sub>1</sub>的荧光比例逐渐增加(图4(d)),这 反映出 Eu<sup>3+</sup>所处的格位由高反演对称中心向低反 演中心演化,由有序向无序演化。需要指出的是, 经过 20 PGa施压后的量子点材料,在制备成光电 器件后具有较好的光电响应特征(图4(e)),说明 材料即使在不定型的状态下,依然保持了良好的 半导体属性<sup>[58]</sup>。

目前,虽然关于钙钛矿量子点的高压研究已

有很多文献报道<sup>[59-62]</sup>,但是关于稀土掺杂量子点的 研究却寥寥无几。但这依然可以给我们带来一些 新的启示:(1)高压制备条件是获得高效的稀土掺 杂钙钛矿量子点发光的一种有效途径;(2)在常态 下的量子点合成过程中,也可以通过合成条件的 改变,调控量子点向与高压下特征相似的结构转 变,获得更为有效的掺杂离子发光。

## 3 稀土掺杂与钙钛矿太阳能电池

## 3.1 稀土荧光转换材料应用于钙钛矿器件

在太阳能电池中,受半导体光伏材料能带和 固有光学属性的限制,器件对光谱的响应范围都 是相对有限的,这是所有光伏器件面临的共性问题。首先,半导体材料的光学带隙决定了长波吸 收截止边(Eg),长于这个波长的光不会产生光电 响应。硅太阳能电池的吸收截止边约为1100 nm,钙钛矿太阳能电池的吸收截止边取决于钙钛 矿材料的组分。在电池中钙钛矿材料的一般组分 为(MA, FA)Pb(Br,I),阳离子中FA的组分和阴 离子中1的组分增多,都会导致响应范围红移,但 也会导致材料和器件的稳定性变差[63-64]。对于一 般的铅卤化物钙钛矿,吸收截止边为800~850 nm。在短波方向(300~400 nm),几乎所有的半导 体光伏材料都具有超强的捕光能力,但是吸收仅 仅停留在材料的表面层次而不能由表及里,因此 更多的是产生表面热损耗,而不是产生光电流<sup>[65]</sup>。 因此,通过紫外到可见及近红外荧光转换(下转换 或下转移过程)、红外到可见荧光转换(上转换过 程)也就成为电池设计的一种策略。一般来说,这 种荧光转换材料既可以设计在电池的电极外面, 也可以设计在电池的内部。设计在电池外面的优 点是对电池的电学性能几乎没有影响,只需考虑 对电池光学性能的影响。而设计在电池的内部, 问题则更加复杂:既要考虑对器件光学性能的影 响,又有考虑对器件电学性能的影响[63-67]。器件内 部引入的荧光材料中,绝大部分都是引入到正型 器件的电子修饰层,或者反型器件的空穴修饰层, 也有一些工作是将荧光转换层作为单独的一层或 者引入到钙钛矿层内部<sup>[68-69]</sup>。

对于发光的电介质材料(绝大部分稀土发光 材料都是电介质材料),大量引入或者引入层过 厚,都会导致器件的电阻增大,从而引起器件效率 的下降。荧光转换材料适量的引入则可能会提高 载流子输运的能力<sup>[70]</sup>。如适量引入可以诱导载流 子输运层或者钙钛矿层结构更加致密,结晶性增 强,缺陷态密度减少,缺陷态复合降低;也可以降 低钙钛矿层与载流子修饰层之间的势垒,减少载 流子的界面聚集和界面复合等[71-72]。在光学方 面,除了荧光转换作用外,一些发光纳米离子的 引入则可以起到对光吸收层捕获能力的散射增强 作用,从而提高光电转换效率[73]。总体而言,荧光 转换层对器件光电转换效率的提升能力,对于紫 外到可见荧光转换层而言,置于器件的外部一般 可以使光电转换效率提升0.3%~1.0%,这是由于 纯粹的荧光转换作用的结果。通常来讲,从对器 件参数的影响来考虑,将荧光转换层置于电极之 外只影响器件的短路电流,而对器件的开路电压

和填充因子几乎没有影响。紫外光谱通常只占整 个太阳光谱的 5% 左右(300~400 nm), 假定原来 的器件在这一波段完全没有光伏响应,且这些光 能够被高效地转换为可见光(转换效率为100%), 理想情况下对400~800 nm 响应的钙钛矿效率的 相对提升也仅仅10%左右;考虑到FTO等电极材 料对这一波段光的吸收作用,荧光转换材料的量 子效率通常情况下远低于1,且对紫外光难于实 现完全的转换以及荧光转换层对其他波段光的透 过率的影响等因素,这只是在理想状况下才能实 现的。而由于多种光学、电学效应共同作用的结 果,将荧光转换层置于器件的内部,可能使器件的 光电转换效率更大程度地提高,有些实验可以使 器件效率提升2.0%以上[74]。在器件内部,荧光转 换层的引入对于器件的短路电流、开路电压和填 充因子等微观参数都有影响,是"综合治理"的 结果。

红外光谱占整个太阳光谱的50%左右,能量 主要分布在800~3000 nm范围内,如果能够有效 地将其转换为太阳电池可以利用的可见光,则对 效率的提升会相当可观,但是毒舌地说,这也是很 难做到的。 在上转换荧光转换材料应用于钙钛 矿电池研究方面,人们将上转换材料置于器件的 内部,观察到了不同程度的光电转换效率提高,即 使是在单一太阳能常数下[66]。应该指出的是,根 据系统深入的研究结果,上转换荧光转换层对各 种电池中光电转换效率提升的主要原因是来自于 荧光纳米粒子对光的散射增强作用(在标准太阳 能常数下),而非荧光转换引起的可见光增强作 用<sup>[75]</sup>。这主要是由于目前所报道的上转换材料, 发光的给体和受体都来自稀土离子的4f-4f跃迁, 在进行太阳能电池应用时存在如下问题:(1)由于 发光中心密集的能级以及由此产生的非辐射跃迁 过程,发光的量子效率通常较低(1%~10%),50 nm以下的纳米尺度发光材料通常比体材料还要 低一个数量级左右(0.1%~1%);另外,上转换发 光的量子效率是一个功率依赖的函数。在弱光条 件下,其发光量子效率比一般条件下测量到的还 要显著下降。(2)稀土离子的吸收截面为10-19~ 10<sup>-18</sup> cm<sup>-2</sup>, 这意味着在器件允许的厚度下(钙钛矿 电池有源层的一般厚度为400~500 nm, 电极修饰 层的厚度一般小于100 nm),从光捕获能力上很 难达到对红外光的有效利用。(3)一般来讲,荧

光转换层所采用的稀土离子的激发跃迁为窄带跃 迁,一般只能转换太阳能谱中极少一部分波长的 光。所以,要获得对光电转换效率提升能力贡献 很大的材料,这些问题必须逐一解决。

在各种荧光转换材料的钙钛矿器件应用中, 我们课题组曾进行了大量的探索和尝试。在下转 移材料的应用中,我们尝试过稀土纳米晶材料如 YVO<sub>4</sub>:Bi,Eu<sup>3+</sup>、SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup>、NaYF<sub>4</sub>:Ce<sup>3+</sup>,Tb<sup>3+</sup> 等,ZnS:Mn<sup>2+</sup>,稀土配合物材料(Eu<sup>3+</sup>配合物),碳点 材料,钙钛矿量子点CsPbCl<sub>3</sub>材料及一些掺杂和过 渡金属钙钛矿量子点ds材料,都使钙钛矿太阳能电 池的光电转换效率获得了不同程度的提高<sup>[73,76-78]</sup>。 也尝试过各种不同的方法,包括"自上而下"的物 理制备方法(如激光溅射、磁控溅射、电子束蒸发) 和"自下而上"的胶体化学制备方法<sup>[77,79-80]</sup>。其中, SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>, Dy<sup>3+</sup>材料是陷阱捕获材料,具有荧光 存储功能。我们采用自上而下的激光溅射方法, 将其沉积到钙钛矿器件内部,位于TiO2和钙钛矿 层之间(图5(a)),首次获得了具有电流存储功能 的钙钛矿太阳电池。这个含义是当太阳光停止辐 照后,电池依然可以通过存储功能发电。当然,这 也只是个"概念股",距离实际应用还很遥远[68]。 在实验上,当这一层的厚度小于100 nm时,可以 使光电转换效率略有提升(图5(b))。而由于其 电介质的属性,电池的阻抗会随着引入层厚度的 增加而显著下降。应该指出的是,这些荧光转换 层的引入,除了对效率的提升之外,对太阳能电池 的光照稳定性提升很大,且具有普遍性(图5(c))。 因为一般情况下,高能量的紫外光照会引起光伏 材料以及电极修饰材料(如TiO2)处于"激发态", 易于发生氧化还原反应而降解,荧光转换层的引 入降低了这种降解反应的发生。



图 5 (a) 基于 SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>, Dy<sup>3+</sup>的 PSCs 结构示意图; (b) 基于不同 SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>, Dy<sup>3+</sup>厚度的器件的 PCE; (c) 365 nm 紫外 光照射下, 对照器件内部/外部引入 SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>, Dy<sup>3+</sup>薄膜的 PSCs 的稳定性。紫外线的强度估计为 23 mW·cm<sup>-2[77]</sup>。

Fig.5 (a) Schematic structure of PSCs based on  $SrAl_2O_4$ :  $Eu^{2+}$ ,  $Dy^{3+}$ . (b) PCE of devices based on different  $SrAl_2O_4$ :  $Eu^{2+}$ ,  $Dy^{3+}$  thicknesses. (c) Stability of PSCs with internal/external introduction of  $SrAl_2O_4$ :  $Eu^{2+}$ ,  $Dy^{3+}$  films under 365 nm UV light irradiation, control devices. The intensity of UV light was estimated to be 23 mW · cm<sup>-2[77]</sup>.

在上转换荧光转换层方面,我们主要是将具 有局域场调控能力的上转换材料,如贵金属调控 的核壳结构材料、半导体表面等离子体调控的纳 米材料以及"有机天线"敏化的上转换材料,引入 到钙钛矿电池器件的内部或者电极外面,来提升 材料本身的荧光转换能力和钙钛矿电池的光电转 换效率<sup>[81]</sup>。这些材料都直接或间接地增强了上转 换纳米晶对红外激发光的捕获能力。需要指出的 是,根据实验结果,即使是采用局域场调控的材 料,在标准太阳能常数下,上转换荧光层对光电转 换效率的提升程度也仅仅能达到0.5%~1%左 右<sup>[82]</sup>。在聚光的太阳能电池中,上转换发光过程 对太阳能效率的提升会更为显著,因为上转换发 光是非线性过程,效率是随着激发光密度的增加 而线性增长的。另外,我们尝试过将基于局域场 增强效应的上转换荧光材料置放在透明阴极的外面<sup>[83]</sup>,这会使上转换材料局域场增强的设计更为 有效,光电转换效率的提升程度更为有效;同时, 对于器件来讲还起到外封装的作用,从而提升器 件的抗水氧能力。当然,这种设计也是"杀敌一千 自损八百"的勾当,因为这样的设计需要透明电 极,采用透明电极的器件初始效率会比标准电极 的效率降低到80%~90% 左右<sup>[84]</sup>。

总之,采用荧光上下转换的方法提升钙钛矿 电池效率的策略,在实验室中是可以实现的,但是 还难于达到理论预测的高度。主要的原因是现有 的上、下转换材料还存在难于解决的自身问题;而 下转移发光材料针对的紫外到可见荧光转换,本 身所针对的能谱转换范围是非常有限的。稀土荧 光材料的发展速度已经跟不上钙钛矿电池"一日 千里"的发展速度,所以,在钙钛矿电池的武林世 界里,它只是个"扫地僧","非主流"的一种存在。 需要指出的是,最近我们在钙钛矿电池中,引入具 有红外响应的有机异质结或半导体量子点,结合 贵金属的散射增强,成功拓展了钙钛矿电池在红 外波段的响应<sup>[85-87]</sup>。

#### 3.2 稀土掺杂对电极材料的能带调控

在钙钛矿电池中,正型电池的标配为金属阳极(ITO, FTO),电子修饰层(多采用TiO<sub>2</sub>或SnO<sub>2</sub>), 钙钛矿层,空穴修饰层(Spiro)和阴极(Au, Ag)。在 早期的工作中,以TiO<sub>2</sub>作为电子传输层的工作居 多。TiO<sub>2</sub>与钙钛矿层的导带匹配,并非是尽善尽美 的,这使得电子在钙钛矿层与TiO<sub>2</sub>层的界面较容 易产生聚集和复合的过程。掺杂可以实现对TiO<sub>2</sub> 等电子修饰材料导带的微调,使其与钙钛矿的能 带更为匹配,也可提供中间能级,实现钙钛矿层与 电极势全间的连续调变,从而提高载流子输运能 力<sup>[88-89]</sup>。在早期的工作中,我们研究了Sm<sup>3+</sup>、Eu<sup>3+</sup>掺 杂对电子修饰层输运能力的调控作用(图 6(a)); 后来,我们又系统研究了各种不同的稀土离子的 引入对TiO<sub>2</sub>层电子输运能力的影响(图 6(b)),发 现几乎所有的稀土离子引入对电池的光电转换都 具有不同能力的提升作用。其中,Gd<sup>3+</sup>离子的引入 对电子输运能力的提升最为显著,并且采用第一 性原理对其进行了理论计算(图 6(c)~(d)),理论 与实验相符合<sup>[89]</sup>。值得说明的是,除了采用稀土掺 杂调控载流子输运之外,我们还采用过二维材料 TiC<sub>x</sub>、Ti<sub>5</sub>Nb<sub>2</sub>、碳纳米管等和Cu<sub>2-x</sub>S等不同维度的材 料,对电子修饰层和空穴修饰层进行调控,提高载 流子输运能力和器件的光电转换性能<sup>[90-91]</sup>。





Fig.6 (a) Energy level diagram of PSCs. (b) PCE of PSCs with lanthanide ion-doped TiO<sub>2</sub>. (c)-(d) Energy band structure of undoped and  $Gd^{3+}$ -doped TiO<sub>2</sub><sup>[89]</sup>.

#### 3.3 稀土离子掺杂的钙钛矿薄膜与光电器件

稀土离子、过渡金属掺杂或表面修饰不仅仅 对钙钛矿量子点材料的发光性能具有显著影响, 同时也对钙钛矿太阳电池的光电性能和稳定性具 有显著的影响。在以往的工作中,我们在(MA, FA)Pb(Br,I)<sub>3</sub>薄膜制备的钙钛矿电池中引入Bi<sup>3+</sup> 离子,不仅提高了器件的光电效率(图7(a)),而 且提高了材料的容忍因子和结构稳定性,阻止了 钙钛矿材料分解反应的发生,尤其是高温下的分 解。Bi<sup>3+</sup>离子的引入可以使钙钛矿器件在80℃的 温度下稳定使用的时间由数十小时达到20 d以上 (图7(b))<sup>[92]</sup>。基于 MAPbI<sub>3</sub>吸收层的太阳能电池 可以拓展红外光谱响应,但是由于 MAPbI<sub>3</sub>易于分 解,影响器件的光电转换效率和使用寿命。2020



- 图 7 (a)Bi<sup>3+</sup>修饰前后 PSCs 在模拟 AM 1.5 光照下的 *J-V*曲线;(b)对照和改性后的器件在 80 °C退火后的热稳定性<sup>[92]</sup>;(c) 循环消除 Pb<sub>0</sub>、I<sub>0</sub>缺陷和 Eu<sup>3+</sup>-Eu<sup>2+</sup>金属离子对再生的机理图;(d)*J-V*曲线,稳定的输出(在 0.97 V下测量),0.15% Eu<sup>3+</sup> 最优器件的参数;(e)加入 0.15% 不同[*M*(acac)<sub>3</sub>(*M* = Eu<sup>3+</sup>,Y<sup>3+</sup>,Fe<sup>3+</sup>)]的 MAPbI<sub>3</sub>(Cl)钙钛矿基 PSCs 在惰性条件下的 长期稳定性研究<sup>[93]</sup>;(f) MAPbI<sub>3</sub>和 MAPbI<sub>3</sub>: *x*Ce<sup>3+</sup>(*x*=0.5%)器件的效率分布;(g) 对照器件和 CsPbBrCl<sub>2</sub>: Sm<sup>3+</sup>器件的 能带结构图;(h) MAPbI<sub>3</sub>钙钛矿晶体缺陷示意图和 CsPbBrCl<sub>2</sub>: Sm<sup>3+</sup>修饰钙钛矿晶体结构示意图<sup>[78]</sup>。
- 图 7 (a) *J-V* curves of PSCs under simulated AM 1.5 light before and after Bi<sup>3+</sup> modification. (b) Thermal stability of control and modified devices after annealing at 80 °C<sup>[92]</sup>. (c) Mechanistic diagram of regeneration by cyclic elimination of Pb<sub>0</sub>, I<sub>0</sub> defects and Eu<sup>3+</sup>-Eu<sup>2+</sup> metal ions. (d) *J-V* curve, stable output(measured at 0.97 V), 0.15% Eu<sup>3+</sup> optimal device parameters. (e) Long-term stability study of MAPbI<sub>3</sub>(Cl)-based chalcogenide PSCs added with 0.15% different [*M*(acac)<sub>3</sub>(*M* = Eu<sup>3+</sup>, Y<sup>3+</sup>, Fe<sup>3+</sup>)] under inert conditions<sup>[93]</sup>. (f) Efficiency distribution of MAPbI<sub>3</sub> <sup>#</sup> MAPbI<sub>3</sub>: *x*Ce<sup>3+</sup>(*x*=0.5%) devices. (g) Energy band structure diagrams of control devices and CsPbBrCl<sub>2</sub>: Sm<sup>3+</sup> devices. (h) Schematic diagram of MAPbI<sub>3</sub> perovskite crystal defects and CsPbBrCl<sub>2</sub>: Sm<sup>3+</sup> modified perovskite crystal structure<sup>[78]</sup>.

年,北京大学周欢萍教授和严纯华院士团队在基 于MAPbI,薄膜的电池中,引入Eu<sup>3+</sup>和Eu<sup>2+</sup>价态共 存的体系(图 7(c)),通过可逆反应的调控,阻止 了分解反应的发生,使MAPbI,基钙钛矿器件的效 率达到21%以上,器件的使用时间达到1000h以 上(图7(d)~(e)),相关结果发表在Science上,成 为通过稀土引入调控钙钛矿电池光电性能的先驱 性工作[93]。此后,人们发现其他的一些稀土离子 如Nd<sup>3+</sup>也对MAPbI<sub>3</sub>钙钛矿薄膜和电池的稳定具 有"镇定剂"的作用<sup>[94]</sup>。我们课题组系统研究了各 种不同稀土离子的引入对 MAPbL 电池光电性能 的影响,包括Ce3+、Eu3+、Nd3+等,最后发现,同其他 的稀土离子相比, Ce3+离子的引入可以使电池的 光电转换性能具有更大程度的提升(图7(f))。这 是因为,Ce<sup>3+</sup>离子具有多种调控作用<sup>[86]</sup>。我们也将 稀土掺杂的无机钙钛矿量子点(CsPbCl<sub>3</sub>:Sm<sup>3+</sup>等) 引入到钙钛矿层,实现多功能的修饰和调控(图 7(g)~(h))<sup>[78]</sup>。首先,稀土掺杂钙钛矿量子点的引 入可以提高钙钛矿层的结晶质量和晶粒尺寸,减 少钙钛矿薄膜中的缺陷,这对光学、电学性能都有 不同程度的提升,表现在可以同时提高短路电流 和开路电压;其次,掺杂钙钛矿量子点可以调控钙 钛矿层的能带位置和费米能级,提高开路电压和 填充因子;最后,稀土离子和钙钛矿薄膜中未配位 的阴离子如1<sup>-</sup>可以成键,其结合能远远高于Pb<sup>2+</sup>离 子与Γ离子的结合能,这就导致材料的结构稳定 性增强;最后,在量子点中存在一些残存的表面基 团,如油胺、油酸等,与钙钛矿中的阳离子配位,可 以增强钙钛矿电池的抗水氧能力。由此,我们获 得的电池效率超过23%<sup>[78]</sup>。类似地,一些其他基 于稀土作为主体B位离子的量子点也对钙钛矿层 具有多功能修饰作用,如CsEuBr,也对钙钛矿太 阳能电池具有多功能修饰作用,提高器件的光电 转换效率和稳定性,尤其是在提高器件的开路电 压方面,具有非常重要的贡献<sup>[95]</sup>。

最近,在提高器件的抗氧化能力方面,我们还 采取向自然学习的策略。在制备钙钛矿薄膜的过 程中,将天然的抗氧化剂番茄红素与钙钛矿的前 驱体共混,制备出高稳定、高效率的基于 FAPbI<sub>3</sub> 薄膜的光电器件<sup>1961</sup>。

4 稀土掺杂与钙钛矿光电器件

4.1 基于上转换过程的窄谱带红外光电探测器 光电检测是半导体的绝对权威,"不容染指",

但是还是被稀土钻了空子。绝大多数的稀土光 学材料为电介质材料,所以一般不能直接实现光 电检测的功能。闪烁体荧光检测的原理是稀土光 学材料吸收高能射线,转换为可见光。可见光信 号再被Si探测器接收,产生光电响应,通过光电 信号就可以对高能射线的辐照剂量进行间接的检 测[97]。这种原理不仅可以用来检测高能射线,最 近也被发扬光大,用来检测特殊波长的红外光。 例如,利用传统的稀土上转换发光材料 NaYF4: Yb<sup>3+</sup>, Er<sup>3+</sup>或 NaYF<sub>4</sub>: Yb<sup>3+</sup>, Tm<sup>3+</sup>, 可以将 980 nm 的红 外光转换为可见光和紫外光,再被具有光电响应 能力的半导体材料(如钙钛矿/石墨烯)吸收,使半 导体发生由价带到导带的跃迁,再通过电极收集 可迁移的自由载流子(导带的电子和价带的空 穴),就可以"借鸡生蛋"进行980 nm 红外光的光 电检测了[87,98-100]。一些稀土离子本征跃迁产生的 红外发射波长,如Nd<sup>3+</sup>的808 nm吸收波段、Er<sup>3+</sup>的 1 540 nm 吸收波段等,都是可以采取相似的方法 进行检测的[101-102]。因为稀土离子的跃迁就是窄 带跃迁,所以探测到的红外光电信号也自然是窄 带的。这可以避免由宽带探测器通过选通滤光实 现窄带探测时,产生即使引入高端的截止滤光片 也难以消除的信号串扰。当然,这种探测器件也 要区分由稀土离子跃迁产生的光电信号(E<sub>Be</sub>)和 钙钛矿自身的带间跃迁(E>E<sub>a</sub>)产生的信号(借助 钙钛矿下的蛋和遗传学上钙钛矿自己下的蛋), 但是这种区分是相对简单和容易实现的,因为我 们可以通过钙钛矿材料带隙的调控来实现稀土红 外跃迁和钙钛矿跃迁间大的 Stokes 位移。这类器 件的探测能力(D)可以达到 10<sup>8</sup>~10<sup>14</sup> Jones, 与器 件结构设计的关系很大,如果简单地在上转换/半 导体复合材料的基础上加电极进行检测,一般D 值都不会很高。如果效仿电池的结构,在阴阳电 极和光捕获层之间引入电子修饰层和空穴修饰 层,则会大大提高载流子的输运收集能力,从而提 高探测的D值。在我们的探测器件结构设计中, 多采用金属、半导体表面等离子体局域场调控的 策略,实现对光电信号的放大,所提器件的响应电 流密度和D值都会较高,一般可以达到10<sup>12</sup>~10<sup>13</sup> Jones<sup>[103-104]</sup>。采用特殊的核壳结构纳米材料设计, 也可以同时实现多波长红外光的检测,例如,我们 最近采取核壳复合结构纳米材料的设计,实现了 对 808, 980, 1 540 nm 波长红外光的同时检测(图

8(a)~(b))<sup>[39]</sup>;利用Au的表面等离子体增强作用 和微纳米透镜对红外光的汇聚作用对光信号进行 放大,可以产生10<sup>3</sup>~10<sup>4</sup>的荧光增强作用(图8(c)~ (d))。在此基础上制备的光电器件,对多个红外 波长都可以达到10<sup>13</sup>的探测能力<sup>[94]</sup>。为了实现对 808,980,1540 nm不同波段的光可区分的检测, 我们采取了脉冲光频率的调制策略,不同的脉冲 光频率可以实现对发射波长的调控,从而可以实 现对探测光波长的区分(图8(e)~(f))<sup>[49]</sup>。这种多 频道的检测有望通过单一的器件对不同的目标进

行追踪,在军事领域具有潜在的应用价值。采用 稀土跃迁的光电探测器,探测过程的响应时间一 般和稀土离子的跃迁寿命相当,为数百微秒到几 个毫秒的量级。理想情况下,响应电流与功率间 的依赖关系与功率的平方成正比。但是,由于上 转换材料的泵浦饱和效应以及光电响应材料中缺 陷态的存在对自由载流子的再捕获过程,一般的 功能依赖关系都会小于平方关系,甚至很多时候 呈现线性或亚线性关系。在二维Yb<sup>3+</sup>离子CsPb-Cl<sub>3</sub>掺杂钙钛矿材料中,由于较低的缺陷态密度和



图 8 (a)光电探测器装置的原理图;(b)在 808,980,1 540 nm 波长,功率密度为 2 mW·cm<sup>-2</sup>的激励下,样品的光电流;(c) UCNCs级联放大示意图;(d)MLA/CSS UCNC复合材料在 808,980,1 540 nm 激发光下的增强因子,激发功率密度为 2 mW·cm<sup>-2</sup>;(e)改变激励光频率,发射谱依赖于激发频率的机理示意图;(f)改变激励功率密度时,上转换发光的相 对强度变化<sup>[49]</sup>;(g)在 400 nm 和 980 nm 下,Yb<sup>3+</sup>掺杂纳米片基探测器的光电流随照明强度的变化而变化<sup>[105]</sup>;(h)未 掺杂和掺杂 Zn<sup>2+</sup>的 CsPbF<sub>3</sub>: Yb<sup>3+</sup>-Tm<sup>3+</sup>/Er<sup>3+</sup>在 980 nm 光激发下的发射光谱<sup>[106]</sup>;(i)980 nm 光照下,CsPbF<sub>3</sub>: Zn<sup>2+</sup>-Yb<sup>3+</sup> Er<sup>3+</sup>/Tm<sup>3+</sup>/m和不加 Au NRs 阵列的探测率<sup>[107]</sup>。

Fig.8 (a) Schematic diagram of the photoelectric detector device. (b) The photocurrents of the samples at 808, 980, 1540 nm with a power density of 2 mW·cm<sup>-2</sup> excitation. (c) UCNCs cascade amplification diagram. (d) Enhancement factors of MLA/CSS UCNC composites under 808, 980, 1 540 nm excitation light, the excitation power density is 2 mW·cm<sup>-2</sup>.(e) Schematic diagram of the mechanism of changing the excitation light frequency and the dependence of the emission spectrum on the excitation frequency. (f) Relative intensity change of upconversion luminescence when changing the excitation power density<sup>[49]</sup>. (g)Photocurrent of Yb<sup>3+</sup>-doped nanosheet-based detectors varies with illumination intensity<sup>[105]</sup>. (h) Emission spectra of undoped and Zn<sup>2+</sup>-doped CsPbF<sub>3</sub>: Yb<sup>3+</sup>-Tm<sup>3+</sup>/Er<sup>3+</sup> under 980 nm optical excitation<sup>[106]</sup>. (i) Detection rates of CsPbF<sub>3</sub>: Zn<sup>2+</sup>-Yb<sup>3+</sup>-Er<sup>3+</sup>/Tm<sup>3+</sup> arrays with and without Au NRs under 980 nm illumination<sup>[107]</sup>.

载流子迁移率,我们观察到了980 nm 光电响应与 输入功率间的平方关系(图 8(g))<sup>[105]</sup>。

除了钙钛矿材料与稀土上转换材料的复合之 外,在钙钛矿或其他半导体材料中掺杂上转换发 光中心是另外一种获得红外光电探测模式的方 法。在稀土离子 Yb、Er 共掺杂的溴基和碘基的 卤化物钙钛矿中(CsPbCl,或CsPbL,),我们进行过 上转换发光的研究。但是遗憾的是,在这些材料 中我们几乎很难观察到肉眼可鉴的上转换发光, 当然也难于实现高灵敏的光电探测。为了克服上 面的问题,我们制备了能够产生上转换发光的 CsPbF<sub>3</sub>:Yb,Er钙钛矿量子点,它的带隙约为4.1 eV。通过Zn离子的共掺杂,材料的缺陷态密度减 小了近1个数量级,上转换发光强度大幅度提高 (图8(h))。利用其作为光电探测材料,我们制备 了具有更高响应能力的光电探测器(图8(i)),D 值可以达到10<sup>13</sup> Jones以上<sup>[106-107]</sup>。值得注意的是, 这类掺杂材料的红外光电响应机制与复合材料具 有本质的不同。在这类掺杂材料中,稀土离子的

电子通过双光子或多光子过程由基态被泵浦到高 能量的激发态,因为激发态的电子非常靠近钙钛 矿导带的位置,可以通过热激活过程被直接激发 到导带,从而产生光电流。这个过程可以通过温 度依赖的光电响应得到间接的佐证。一般的光电 探测器光电流会随着温度的升高而显著下降,而 这类稀土掺杂钙钛矿探测器光电流随着温度的升 高呈现指数上升的趋势,适合在比常温更高的环 境下进行信号的检测<sup>[107]</sup>。

# 4.2 基于5d组态与钙钛矿耦合的深紫外光电探 测器件

对于非掺杂的铅卤化物钙钛矿半导体材料, 光电探测的波长可以覆盖从可见到紫外的波段 (300~800 nm)。对于更短波长的紫外光,如日盲 深紫外区域的探测(200~300 nm),同红外光的探 测一样,非掺杂钙钛矿则显得有些力不从心。具 有4f-5d 跃迁的稀土材料与铅卤化物钙钛矿的结 合可以将钙钛矿的光电检测范围拓展到紫外区 域。例如,CsPbX<sub>3</sub>:Ce<sup>3+</sup>(X=Cl,Br,I)材料通过Ce<sup>3+</sup>



图 9 (a)~(b)Ce<sup>3+</sup>、Ce<sup>3+</sup>-掺杂CsPbCl<sub>3</sub>的态密度(DOS) 计算图;(c)模拟Al膜和CsPbCl<sub>3</sub>:Ce<sup>3+</sup>/Al杂化膜的波长依赖平均电 场强度;(d)光电探测器的探测能力<sup>[108]</sup>。

Fig.9 (a)-(b)Calculated density of states (DOS) for Ce<sup>3+</sup>, Ce<sup>3+</sup>-doped CsPbCl<sub>3</sub>. (c)Average electric field intensity dependent on wavelength of the simulated Al membrane and CsPbCl<sub>3</sub>: Ce<sup>3+</sup>/Al hybrid membrane. (d)Detection capability of photoelectric detectors<sup>[108]</sup>. 的5d电子组态与钙钛矿能带间的耦合,可以大大 增强钙钛矿在深紫外区域的吸收能力,从而提升 相应范围的光电响应能力。通过半导体能带的第 一性计算表明(图9(a)~(b)),掺杂铅卤钙钛矿材 料在这一区域的吸收跃迁主要来自于钙钛矿的价 带与Ce<sup>3+</sup>离子的5d电子组态间的跃迁。这一跃迁

#### 表 2 稀土离子掺杂钙钛矿在光电器件中应用的典型例子

Tab. 2 Typical examples of rare earth ion doped perovskite materials used in optoelectronic devices

|                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 年份                                                                                                                                                                                                                                                                | 激发波长/nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 宿主                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 掺杂离子                                                                                                                                            | PLQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y/%                                                                                                                                                                            | 应用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 参考文献                                                                                                                                                                                                                                 |
| 2018                                                                                                                                                                                                                                                              | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CsPbCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yb <sup>3+</sup>                                                                                                                                | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4±7                                                                                                                                                                            | 太阳能聚光器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [109]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CsPb(Cl_xBr_{1-x})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Yb^{3+}$                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38                                                                                                                                                                             | 太阳能聚光器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [110]                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 钜                                                                                                                                               | 丐钛矿太阳能电池                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |
| 年份                                                                                                                                                                                                                                                                | 宿主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 掺杂离子                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCE/%                                                                                                                                           | $J_{\rm SC}/({\rm mA}\cdot{\rm cm}^{-2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{\rm oc}/{\rm V}$                                                                                                                                                           | FF/%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 参考文献                                                                                                                                                                                                                                 |
| 2018                                                                                                                                                                                                                                                              | MAPbI <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eu <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.700                                                                                                                                          | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.020                                                                                                                                                                          | 76.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [111]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | CsPbI,Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eu <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.710                                                                                                                                          | 14.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.223                                                                                                                                                                          | 76.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [112]                                                                                                                                                                                                                                |
| 2019                                                                                                                                                                                                                                                              | CsPbI,Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eu <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.250                                                                                                                                          | 15.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.250                                                                                                                                                                          | 79.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [113]                                                                                                                                                                                                                                |
| 2021                                                                                                                                                                                                                                                              | CsPbI,Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eu <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.100                                                                                                                                          | 15.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.130                                                                                                                                                                          | 70.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [114]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | CsPbBr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathrm{Sm}^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.140                                                                                                                                          | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.594                                                                                                                                                                          | 95.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [115]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | CsPbI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eu <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.000                                                                                                                                          | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.898                                                                                                                                                                          | 68.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [116]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPbI_Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | La <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.030                                                                                                                                           | 11.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.120                                                                                                                                                                          | 61.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [117]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | MAPbI, Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathrm{Se}^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.630                                                                                                                                          | 20.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.134                                                                                                                                                                          | 83.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [118]                                                                                                                                                                                                                                |
| 2019                                                                                                                                                                                                                                                              | MAPbI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathrm{Nd}^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.150                                                                                                                                          | 24.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.040                                                                                                                                                                          | 83.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [119]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | GAPbI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tm <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [120]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | MAPbI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ce <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.670±0.520                                                                                                                                    | 24.34±0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.100 \pm 0.010$                                                                                                                                                              | 80.93±0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [121]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPbBr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eu <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,280                                                                                                                                           | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 450                                                                                                                                                                         | 71, 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [122]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | α-CsPbI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yh <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 400                                                                                                                                          | 18 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 130                                                                                                                                                                          | 60,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [123]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPbI Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sm <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12. 860                                                                                                                                         | 15. 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. 116                                                                                                                                                                         | 72.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [124]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPbI Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sm <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 681                                                                                                                                          | 5 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 298                                                                                                                                                                          | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [125]                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                   | 00101201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 稀十初                                                                                                                                             | 参杂钙钛矿发光二极管                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.270                                                                                                                                                                         | 70100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [120]                                                                                                                                                                                                                                |
| 年份                                                                                                                                                                                                                                                                | 宿主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 掺杂离子                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EOE/%                                                                                                                                           | 开启由压/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 最大高度/(cd·m <sup>-2</sup> )                                                                                                                                                     | 器件寿命/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 参老文献                                                                                                                                                                                                                                 |
| 2019                                                                                                                                                                                                                                                              | CsPbCl_Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 040                                                                                                                                                                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [126]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPbBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nd <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 7                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 138                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [127]                                                                                                                                                                                                                                |
| 2023                                                                                                                                                                                                                                                              | CsPbCl Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yh <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 584 7 mW $\cdot$ cm <sup>-2</sup>                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [128]                                                                                                                                                                                                                                |
| 2025                                                                                                                                                                                                                                                              | d51 bd1 <sub>3-x</sub> b1 <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 倍                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [120]                                                                                                                                                                                                                                |
| 年份                                                                                                                                                                                                                                                                | 宿主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 掺杂离子                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 | CIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRI                                                                                                                                                                            | > 流 明 效 率 / ( ]m ⋅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 参老文献                                                                                                                                                                                                                                 |
| 2019                                                                                                                                                                                                                                                              | Cs (Na/Ag)InCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ho <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 | (0, 400, 0, 0, 470, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.4                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [129]                                                                                                                                                                                                                                |
| 2020                                                                                                                                                                                                                                                              | CsPhBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eu <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 075                                                                                                                                           | (0, 384, 8, 0, 404, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88 9                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [130]                                                                                                                                                                                                                                |
| 2018                                                                                                                                                                                                                                                              | CaPhP <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Цu                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1075                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05.7                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [121]                                                                                                                                                                                                                                |
| 2010                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Th^{3+}/Eu^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 945                                                                                                                                           | (0, 3335, 0, 3413)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                | 63 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1                                                                                                                                                                                                                              |
| 2020                                                                                                                                                                                                                                                              | Cs Na Ag InCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                       | 4 945                                                                                                                                           | (0. 333 5, 0. 341 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                | 63. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [131]                                                                                                                                                                                                                                |
| 2020<br>2020                                                                                                                                                                                                                                                      | $Cs_2Na_{0.6}Ag_{0.4}InCl_6$<br>Cs_Bi_Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Tb^{3+}/Eu^{3+}$<br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                    | 4 945<br>—<br>8 967                                                                                                                             | (0.3335, 0.3413)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                | 63. 21<br>—<br>12. 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [131]<br>[132]<br>[133]                                                                                                                                                                                                              |
| 2020<br>2020<br>2020                                                                                                                                                                                                                                              | $Cs_2Na_{0.6}Ag_{0.4}InCl_6$ $Cs_3Bi_2Br_9$ $Cs_4ag_{0.6}Na_{0.6}InCl_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Tb^{3+}/Eu^{3+}$<br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Co <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                              | 4 945<br>—<br>8 967<br>4 430                                                                                                                    | (0. 333 5, 0. 341 3) $(0. 296 0, 0. 289 0)$ $(0. 360 0, 0. 330 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                | 63. 21<br>—<br>12. 60<br>22. 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [131]<br>[132]<br>[133]<br>[134]                                                                                                                                                                                                     |
| 2020<br>2020<br>2020<br>2021                                                                                                                                                                                                                                      | $\begin{array}{c} \text{CS1 DB1}_{3} \\ \text{CS}_{2}\text{Na}_{0.6}\text{Ag}_{0.4}\text{InCl}_{6} \\ \text{CS}_{3}\text{Bi}_{2}\text{Br}_{9} \\ \text{CS}_{2}\text{Ag}_{0.4}\text{Na}_{0.6}\text{InCl}_{6} \\ \text{CS}_{2}\text{PbB-I} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Tb^{3+}/Eu^{3+}$ Bi <sup>3+</sup> /Yb <sup>3+</sup> Sm <sup>3+</sup> Bi <sup>3+</sup> /Ce <sup>3+</sup> Cd <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                      | 4 945<br>                                                                                                                                       | (0. 333 5, 0. 341 3) $(0. 296 0, 0. 289 0)$ $(0. 360 0, 0. 330 0)$ $(0. 334 0, 0. 338 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95. 7<br>95. 7                                                                                                                                                                 | 63. 21<br>—<br>12. 60<br>22. 33<br>90. 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [131]<br>[132]<br>[133]<br>[134]<br>[135]                                                                                                                                                                                            |
| 2020<br>2020<br>2020<br>2021<br>2018                                                                                                                                                                                                                              | $\begin{array}{c} csrbbl_{3}\\ cs_{2}Na_{0.6}Ag_{0.4}InCl_{6}\\ cs_{3}Bi_{2}Br_{9}\\ cs_{2}Ag_{0.4}Na_{0.6}InCl_{6}\\ csPbBrI_{2}\\ csPbCl_{-}Br\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Tb^{3+}/Eu^{3+}$ Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup>                                                                                                                                                                                                                                                                                       | 4 945<br><br>8 967<br>4 430<br>5 430<br>                                                                                                        | (0. 333 5, 0. 341 3) $(0. 296 0, 0. 289 0)$ $(0. 360 0, 0. 330 0)$ $(0. 334 0, 0. 338 6)$ $(0. 330 0, 0. 290 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95. 7<br>95. 7<br>81. 4                                                                                                                                                        | 63. 21<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [131]<br>[132]<br>[133]<br>[134]<br>[135]<br>[136]                                                                                                                                                                                   |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021                                                                                                                                                                                                                      | $\begin{array}{c} c_{s_{1}} n_{s_{1,6}} A_{g_{0,4}} In Cl_{6} \\ c_{s_{3}} Bi_{2} Br_{9} \\ c_{s_{2}} Ag_{0,4} Na_{0,6} In Cl_{6} \\ c_{s} Pb Br I_{2} \\ c_{s} Pb Cl_{1,8} Br_{1,2} \\ c_{s} Ag In Cl \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Tb^{3+}/Eu^{3+}$<br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Ex <sup>3+</sup>                                                                                                                                                                                                                                              | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—                                                                                                      | (0. 333 5, 0. 341 3)<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95. 7<br>95. 7<br>81. 4<br>89. 0                                                                                                                                               | 63. 21<br>—<br>12. 60<br>22. 33<br>90. 09<br>51<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [ 131]<br>[ 132]<br>[ 133]<br>[ 134]<br>[ 135]<br>[ 136]<br>[ 137]                                                                                                                                                                   |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021                                                                                                                                                                                                                      | $\begin{array}{c} cs_{1}bbl_{3}\\ cs_{2}Na_{0.6}Ag_{0.4}InCl_{6}\\ cs_{3}Bi_{2}Br_{9}\\ cs_{2}Ag_{0.4}Na_{0.6}InCl_{6}\\ csPbBrI_{2}\\ csPbBrI_{2}\\ csPbCl_{1.8}Br_{1.2}\\ cs_{2}AgInCl_{6}\\ coPbCl_{1}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Tb^{3+}/Eu^{3+}$<br>Bi^{3+}/Yb^{3+}<br>Sm <sup>3+</sup><br>Bi^{3+}/Ce^{3+}<br>Gd <sup>3+</sup><br>Ce^{3+}/Mn^{2+}<br>Bi^{3+}/Er^{3+}<br>VL^{3+}                                                                                                                                                                                                                                                                                                               | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—                                                                                                 | (0. 333 5, 0. 341 3)<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95. 7<br>95. 7<br>81. 4<br>89. 0                                                                                                                                               | $\begin{array}{c} 63.21 \\ - \\ 12.60 \\ 22.33 \\ 90.09 \\ 51 \\ - \\ 112 \text{ mW scm^{-2}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ 131]<br>[ 132]<br>[ 133]<br>[ 134]<br>[ 135]<br>[ 136]<br>[ 137]<br>[ 138]                                                                                                                                                         |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2021<br>2021                                                                                                                                                                                                      | $\begin{array}{c} \text{Cs1 bB1}_{3} \\ \text{Cs}_{2}\text{Na}_{0.6}\text{Ag}_{0.4}\text{InCl}_{6} \\ \text{Cs}_{3}\text{Bi}_{2}\text{Br}_{9} \\ \text{Cs}_{2}\text{Ag}_{0.4}\text{Na}_{0.6}\text{InCl}_{6} \\ \text{CsPbBrI}_{2} \\ \text{CsPbCl}_{1.8}\text{Br}_{1.2} \\ \text{CsPbCl}_{1.8}\text{Br}_{1.2} \\ \text{CsPbCl}_{3} \\ \text{CsPbCl}_{3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Tb^{3+}/Eu^{3+} Bi^{3+}/Yb^{3+} Sm^{3+} Sm^{3+} Bi^{3+}/Ce^{3+} Gd^{3+} Ce^{3+}/Mn^{2+} Bi^{3+}/Er^{3+} Yb^{3+} Yb^{3+} Nl^{3+}$                                                                                                                                                                                                                                                                                                                              | 4 945<br>                                                                                                                                       | (0. 333 5, 0. 341 3)<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95. 7<br>95. 7<br>81. 4<br>89. 0<br>—                                                                                                                                          | $\begin{array}{c} 63.21 \\ \\ 12.60 \\ 22.33 \\ 90.09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ 131 ]<br>[ 132 ]<br>[ 133 ]<br>[ 134 ]<br>[ 135 ]<br>[ 136 ]<br>[ 137 ]<br>[ 138 ]<br>[ 130 ]                                                                                                                                      |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2021<br>2022<br>2022                                                                                                                                                                                              | $\begin{array}{c} Cs_{1}bbl_{3}\\ Cs_{2}Na_{0.6}Ag_{0.4}InCl_{6}\\ Cs_{3}Bi_{2}Br_{9}\\ Cs_{2}Ag_{0.4}Na_{0.6}InCl_{6}\\ CsPbBrI_{2}\\ CsPbCl_{1.8}Br_{1.2}\\ Cs_{2}AgInCl_{6}\\ CsPbCl_{3}\\ Cs_{2}AgIn_{0.99}Bi_{0.01}Cl_{6}\\ CsPbCl_{3}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Tb^{3+}/Eu^{3+} Bi^{3+}/Yb^{3+} Sm^{3+} Bi^{3+}/Ce^{3+} Gd^{3+} Gd^{3+} Ce^{3+}/Mn^{2+} Bi^{3+}/Er^{3+} Yb^{3+} Nd^{3+} Sb^{3+} Es^{-3+}/Us^{-3+}$                                                                                                                                                                                                                                                                                                            | 4 945<br>                                                                                                                                       | (0. 333 5, 0. 341 3) $(0. 296 0, 0. 289 0)$ $(0. 360 0, 0. 330 0)$ $(0. 334 0, 0. 338 6)$ $(0. 330 0, 0. 290 0)$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95. 7<br>95. 7<br>81. 4<br>89. 0<br>—<br>—                                                                                                                                     | $\begin{array}{c} 63.21 \\ \\ 12.60 \\ 22.33 \\ 90.09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [ 131 ]<br>[ 132 ]<br>[ 133 ]<br>[ 134 ]<br>[ 135 ]<br>[ 136 ]<br>[ 137 ]<br>[ 138 ]<br>[ 139 ]<br>[ 140 ]                                                                                                                           |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2021<br>2021                                                                                                                                                                                                      | $\begin{array}{c} Cs_{1}bBI_{3}\\ Cs_{2}Na_{0.6}Ag_{0.4}InCl_{6}\\ Cs_{3}Bi_{2}Br_{9}\\ Cs_{2}Ag_{0.4}Na_{0.6}InCl_{6}\\ CsPbBrI_{2}\\ CsPbCl_{1.8}Br_{1.2}\\ Cs_{2}AgInCl_{6}\\ CsPbCl_{3}\\ Cs_{2}AgIn_{0.99}Bi_{0.01}Cl_{6}\\ Cs_{2}NaInCl_{6}\\ Cs_{2$ | $Tb^{3+}/Eu^{3+}$ Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>L <sup>3+</sup> L <sup>3+</sup>                                                                                                               | 4 945<br>                                                                                                                                       | (0. 333 5, 0. 341 3) $(0. 296 0, 0. 289 0)$ $(0. 360 0, 0. 330 0)$ $(0. 334 0, 0. 338 6)$ $(0. 330 0, 0. 290 0)$ $-$ $-$ $(0. 312 0, 0. 343 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95. 7<br>95. 7<br>81. 4<br>89. 0<br><br><br>                                                                                                                                   | $\begin{array}{c} 63.21 \\ \\ 12.60 \\ 22.33 \\ 90.09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [ 131 ]<br>[ 132 ]<br>[ 133 ]<br>[ 134 ]<br>[ 135 ]<br>[ 136 ]<br>[ 137 ]<br>[ 138 ]<br>[ 139 ]<br>[ 140 ]<br>[ 141 ]                                                                                                                |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2021<br>2022<br>2022                                                                                                                                                                                              | $\begin{array}{c} cs_{1}bbl_{3}\\ cs_{2}Na_{0.6}Ag_{0.4}InCl_{6}\\ cs_{3}Bi_{2}Br_{9}\\ cs_{2}Ag_{0.4}Na_{0.6}InCl_{6}\\ CsPbBrI_{2}\\ csPbCl_{1.8}Br_{1.2}\\ csPbCl_{1.8}Br_{1.2}\\ csPbCl_{3}\\ cs_{2}AgInCl_{6}\\ cs_{2}NaInCl_{6}\\ cs_{2}NaInCl_{6}\\ cs_{2}AgInCl_{6}\\ cs_{2}AgInCl_{6}\\ cs_{2}AgInCl_{6}\\ cs_{2}AgInCl_{6}\\ cs_{2}AgInCl_{6}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Tb^{3+}/Eu^{3+} \\Bi^{3+}/Yb^{3+} \\Sm^{3+} \\Bi^{3+}/Ce^{3+} \\Gd^{3+} \\Ce^{3+}/Mn^{2+} \\Bi^{3+}/Er^{3+} \\Yb^{3+} \\Nd^{3+} \\Sb^{3+} Er^{3+}/Ho^{3+} \\La^{3+}-Lu^{3+}$                                                                                                                                                                                                                                                                                  | 4 945<br>                                                                                                                                       | (0. 333 5, 0. 341 3)<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>(0. 312 0, 0. 343 0)<br>(0. 312 0, 0. 343 0)<br>(0. 54 ab 36 ab 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83. 7<br><br>95. 7<br>81. 4<br>89. 0<br><br><br><br><br><br>                                                                                                                   | 63. 21<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ 131 ]<br>[ 132 ]<br>[ 133 ]<br>[ 134 ]<br>[ 135 ]<br>[ 136 ]<br>[ 137 ]<br>[ 138 ]<br>[ 139 ]<br>[ 140 ]<br>[ 141 ]                                                                                                                |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2021<br>2022<br>2022                                                                                                                                                                                              | $\begin{array}{c} \text{CsrbBl}_{3} \\ \text{Cs}_{2}\text{Na}_{0.6}\text{Ag}_{0.4}\text{InCl}_{6} \\ \text{Cs}_{3}\text{Bi}_{2}\text{Br}_{9} \\ \text{Cs}_{2}\text{Ag}_{0.4}\text{Na}_{0.6}\text{InCl}_{6} \\ \text{CsPbBrI}_{2} \\ \text{CsPbCl}_{1.8}\text{Br}_{1.2} \\ \text{CsPbCl}_{1} \text{Br}_{1.2} \\ \text{CsPbCl}_{3} \\ \text{Cs}_{2}\text{AgInCl}_{6} \\ \text{CsPbCl}_{3} \\ \text{Cs}_{2}\text{AgIn}_{0.99}\text{Bi}_{0.01}\text{Cl}_{6} \\ \text{Cs}_{2}\text{NaInCl}_{6} \\ \text{Cs}_{2}\text{AgInCl}_{6} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Tb^{3+}/Eu^{3+}$ Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                                            | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>6 455<br>—<br>章                                                                              | (0.3335, 0.3413)<br>(0.2960, 0.2890)<br>(0.3600, 0.3300)<br>(0.3340, 0.3386)<br>(0.3300, 0.2900)<br>—<br>—<br>(0.3120, 0.3430)<br>—<br>西<br>(0.3450, 0.3430)<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83. 7<br><br>95. 7<br>81. 4<br>89. 0<br><br><br><br><br><br>                                                                                                                   | 63. 21<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ 131 ]<br>[ 132 ]<br>[ 133 ]<br>[ 134 ]<br>[ 135 ]<br>[ 136 ]<br>[ 137 ]<br>[ 138 ]<br>[ 139 ]<br>[ 140 ]<br>[ 141 ]                                                                                                                |
| 2020           2020           2020           2021           2021           2021           2021           2022           2022           2022           年份                                                                                                          | $Cs_1 bbl_3$<br>$Cs_2 Na_{0.6} Ag_{0.4} InCl_6$<br>$Cs_3 Bi_2 Br_9$<br>$Cs_2 Ag_{0.4} Na_{0.6} InCl_6$<br>$Cs PbBrI_2$<br>$Cs PbCl_{1.8} Br_{1.2}$<br>$Cs_2 AgInCl_6$<br>$Cs PbCl_3$<br>$Cs_2 AgIn_{0.99} Bi_{0.01} Cl_6$<br>$Cs_2 AgInCl_6$<br>$Cs_2 AgInCl_6$<br>$Cs_2 AgInCl_6$<br>$Cs_2 AgInCl_6$<br>$Cs_2 AgInCl_6$<br>$Cs_2 AgInCl_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                        | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>—<br>6 455<br>—<br>单<br>响应时间                                                                 | (0.3335, 0.3413)<br>—<br>(0.2960, 0.2890)<br>(0.3600, 0.3300)<br>(0.3340, 0.3386)<br>(0.3300, 0.2900)<br>—<br>—<br>(0.3120, 0.3430)<br>—<br>西<br>西<br>野鈦矿光电探测器<br>响应度/(A·W <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83. /<br>—<br>95. 7<br>81. 4<br>89. 0<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>探测率/ Jones                                                                                         | 63. 21<br>—<br>12. 60<br>22. 33<br>90. 09<br>51<br>—<br>112 mW ⋅ cm <sup>-2</sup><br>—<br>—<br>EQE/%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [131]<br>[132]<br>[133]<br>[134]<br>[135]<br>[136]<br>[137]<br>[138]<br>[139]<br>[140]<br>[141]<br>参考文献                                                                                                                              |
| 2020           2020           2020           2021           2021           2021           2021           2022           2022           2022           年份           2018                                                                                           | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrI <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> NaInCl <sub>6</sub> Cs <sub>2</sub> NaInCl <sub>6</sub> Cs <sub>2</sub> AgIncl <sub>6</sub> Cs2AgInCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                        | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>—<br>—<br>6 455<br>—<br>章<br>啊应时间<br>1. 7/1.6 s                                              | (0.3335, 0.3413)<br>—<br>(0.2960, 0.2890)<br>(0.3600, 0.3300)<br>(0.3340, 0.3386)<br>(0.3300, 0.2900)<br>—<br>—<br>(0.3120, 0.3430)<br>—<br>西<br>些<br>些<br>些<br>些<br>一<br>(0.312, 0.3430)<br>—<br>些<br>些<br>些<br>一<br>一<br>(0.312, 0.3430)<br>—<br>些<br>些<br>一<br>(0.312, 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>探测率/ Jones                                                                                                       | 63. 21<br><br>12. 60<br>22. 33<br>90. 09<br>51<br><br>112 mW · cm <sup>-2</sup><br><br>EQE/%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [131]<br>[132]<br>[133]<br>[134]<br>[135]<br>[136]<br>[137]<br>[138]<br>[139]<br>[140]<br>[141]<br>参考文献<br>[142]                                                                                                                     |
| 2020           2020           2020           2021           2021           2021           2021           2021           2022           2022           2022           4年份           2018           2018           2019                                             | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrl <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> NaInCl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.59</sub> Bi <sub>0.01</sub> Cl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                        | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>—<br>6 455<br>—<br>章<br>响应时间<br>1. 7/1. 6 s<br>694/4 648 ms,                                 | (0. 333 5, 0. 341 3)<br>—<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br><u>5</u> 钛矿光电探测器<br>响应度/(A·W <sup>-1</sup> )<br>~0. 25<br>2. 40×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>—<br>探测率/ Jones<br>—<br>—                                                                                        | $\begin{array}{c} 63.21 \\ \\ 12.60 \\ 22.33 \\ 90.09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [131]         [132]         [133]         [134]         [135]         [136]         [137]         [138]         [139]         [140]         [141]                                                                                    |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2022<br>2022                                                                                                                                                                                                      | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrl <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> NaInCl <sub>6</sub> Cs <sub>2</sub> NaInCl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.59</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> MAPbL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                        | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>—<br>6 455<br>—                                                                              | (0. 333 5, 0. 341 3)<br>—<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br><u>—</u><br>(0. 312 0, 0. 343 0)<br><u>—</u><br><u>—</u><br>(0. 312 0, 0. 343 0)<br><u>—</u><br><u>—</u><br>(0. 312 0, 0. 243 0)<br><u>—</u><br><u>—</u><br>(0. 312 0, 0. 343 0)<br><u>—</u><br>(0. 312 0, 0. 343 0)<br>(0. 312 0, 0. 34 | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>—<br>探测率/ Jones<br>—<br>5. 20×10 <sup>14</sup>                                                                   | $\begin{array}{c}       63.21 \\       \\       12.60 \\       22.33 \\       90.09 \\       51 \\       \\       112 \text{ mW} \cdot \text{cm}^{-2} \\       \\       \\       \\       \\       5.8 \times 10^{5} \\       \\       \\       5.8 \times 10^{5} \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\      -$ | [131]         [132]         [133]         [134]         [135]         [136]         [137]         [138]         [139]         [140]         [141]         参考文献         [142]         [143]         [144]                             |
| 2020<br>2020<br>2020<br>2021<br>2018<br>2021<br>2022<br>2022                                                                                                                                                                                                      | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrI <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> MAPbL <sub>3</sub> MAPbBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup>                                                                                        | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>6 455<br>—                                                                                   | (0. 333 5, 0. 341 3)<br>—<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br><u>5</u> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—                                                                             | $\begin{array}{c} 63. 21 \\ \\ 12. 60 \\ 22. 33 \\ 90. 09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \\ \\ \\ \\ \\ \\ \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [131]         [132]         [133]         [134]         [135]         [136]         [137]         [138]         [139]         [140]         [141]         参考文献         [142]         [143]         [144]         [145]               |
| 2020         2020         2020         2021         2018         2021         2022         2022         2022         2022         年份         2019         2020         2019         2020                                                                          | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrI <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> Cs2AgInCl <sub>6</sub> Cs2AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgIn <sub>0.99</sub> Bi <sub>0.01</sub> Cl <sub>6</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs2AgInCl <sub>6</sub> Cs2AgInCl <sub>6</sub> Cs2AgInCl <sub>6</sub> Cs2AgInCl <sub>6</sub> Cs2AgInCl <sub>6</sub> Cs4BB         MAPBB         MAPBB         Cs4BB         Cs4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tb <sup>3+</sup> /Eu <sup>3+</sup><br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup><br>Š杂离子<br>Y <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Er <sup>3+</sup> | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>6 455<br>—<br>章<br>响应时间<br>1. 7/1. 6 s<br>694/4 648 ms,<br>19. 6/12. 8 μs<br>—               | (0. 333 5, 0. 341 3)<br>—<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br>西<br>西<br>西<br>近<br>(0. 343 0, 0. 343 0)<br>—<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br>—<br>—<br>—<br>—<br>(0. 312 0, 0. 343 0)<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>5.20×10 <sup>14</sup><br>(2.02±0.01)×10 <sup>12</sup><br>1.24×10 <sup>12</sup>     | $\begin{array}{c} 63. 21 \\ \\ 12. 60 \\ 22. 33 \\ 90. 09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \\ \\ \\ \\ \\ \\ \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [131]         [132]         [133]         [134]         [135]         [136]         [137]         [138]         [139]         [140]         [141]         参考文献         [142]         [143]         [144]         [145]               |
| 2020           2020           2020           2021           2021           2021           2021           2021           2022           2022           2022           2022           2020           年份           2019           2020           2020           2021 | Cs1 bBl <sub>3</sub> Cs <sub>2</sub> Na <sub>0.6</sub> Ag <sub>0.4</sub> InCl <sub>6</sub> Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> Cs <sub>2</sub> Ag <sub>0.4</sub> Na <sub>0.6</sub> InCl <sub>6</sub> CsPbBrI <sub>2</sub> CsPbCl <sub>1.8</sub> Br <sub>1.2</sub> CsPbCl <sub>3</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> CsPbCl <sub>3</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> Cs <sub>2</sub> AgInCl <sub>6</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsPbCl <sub>3</sub> CsYbI <sub>3</sub> MAPbI <sub>3</sub> MAPbBr <sub>3</sub> Cs <sub>2</sub> AgBiBr <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Tb^{3+}/Eu^{3+}$<br>Bi <sup>3+</sup> /Yb <sup>3+</sup><br>Sm <sup>3+</sup><br>Bi <sup>3+</sup> /Ce <sup>3+</sup><br>Gd <sup>3+</sup><br>Ce <sup>3+</sup> /Mn <sup>2+</sup><br>Bi <sup>3+</sup> /Er <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Sb <sup>3+</sup> Er <sup>3+</sup> /Ho <sup>3+</sup><br>La <sup>3+</sup> -Lu <sup>3+</sup><br>餐家离子<br>Y <sup>3+</sup><br>Yb <sup>3+</sup><br>Nd <sup>3+</sup><br>Er <sup>3+</sup>                  | 4 945<br>—<br>8 967<br>4 430<br>5 430<br>—<br>—<br>—<br>6 455<br>—<br>章<br>响应时间<br>1. 7/1.6 s<br>694/4 648 ms,<br>19. 6/12. 8 μs<br>—<br>395 ns | (0. 333 5, 0. 341 3)<br>(0. 296 0, 0. 289 0)<br>(0. 360 0, 0. 330 0)<br>(0. 334 0, 0. 338 6)<br>(0. 330 0, 0. 290 0)<br>—<br>(0. 312 0, 0. 343 0)<br>—<br>西<br>西<br>西<br>西<br>(0. 312 0, 0. 343 0)<br>—<br>-<br>-<br>-<br>-<br>-<br>(0. 312 0, 0. 343 0)<br>—<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.7<br>—<br>95.7<br>81.4<br>89.0<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>5.20×10 <sup>14</sup><br>(2.02±0.01)×10 <sup>12</sup><br>1.34×10 <sup>12</sup> , 1.18×10 <sup>12</sup> | $\begin{array}{c} 63. 21 \\ \\ 12. 60 \\ 22. 33 \\ 90. 09 \\ 51 \\ \\ 112 \text{ mW} \cdot \text{cm}^{-2} \\ \\ \\ \\ \\ \\ \\ \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [131]         [132]         [133]         [134]         [135]         [136]         [137]         [138]         [139]         [140]         [141]         参考文献         [142]         [143]         [144]         [145]         [146] |

的产生大大增强了铅卤钙钛矿材料在深紫外区域 的吸收振子强度。再结合 Al<sub>2</sub>O<sub>3</sub>的局域场增强效 应(图9(c)),由此,CsPbCl<sub>3</sub>:Ce<sup>3+</sup>基量子点探测能 力达到了10<sup>12</sup>~10<sup>13</sup> Jones(图9(d)),达到了相应波 长探测D值的卓越水平,可以和一些成熟的半导 体探测器如Ga<sub>2</sub>O<sub>3</sub>和ZnO基日盲区深紫外探测器 相媲美<sup>[108]</sup>。关于稀土离子掺杂钙钛矿在光电器 件中应用的典型例子见表2。

#### 4.3 基于量子剪裁的宽光谱探测器件

光的波长范围极广,覆盖了从深紫外到中远 红外区域,没有任何一种半导体探测器的波长可 以实现上述波长范围的全覆盖。由于稀土离子光 学跃迁的局限,稀土离子掺杂对于光电探测器探 测范围的拓展以及所产生的影响只是在有限的范 围内。在这里,我们所定义的宽光谱探测器是相 对于商用范围最广泛的硅探测器而言:如果所研 制的新的探测器的探测范围达到或超过了Si探

UV+Visible+NIR PD

测器的光谱响应范围(350~1100 nm),我们将其 视为具有常用价值的宽光谱探测器。如同我们在 上文中所提及的,将钙钛矿量子剪裁材料发光材 料(CsPbCl<sub>3</sub>:Ce<sup>3+</sup>,Yb<sup>3+</sup>)与硅探测器结合,可以使硅 探测器的光谱响应范围拓展为200~1100 nm,也 可以使探测器具备在深紫外区域的响应能力,达 到硅探测器在可见光区域的水平(EOE为70%), 这种探测能力也是其他区域的探测器很难达到 的<sup>[50]</sup>。我们知道,一般实验室中的可见-近红外光 谱仪就是使用基于硅探测器的光电倍增管,通过 量子剪裁荧光转换,可以使其探测范围达到深紫 外区域;如果再与光电信号放大技术相结合,有望 替代传统的硅光电倍增管。另外,制备成阵列探 测器后,在宽光谱成像以及遥感探测领域也具有 潜在的应用价值。

最近,我们设计与制备了一种新的探测器,基 于响应为可见到近红外区域的CsPbI3:RE钙钛矿



- 图 10 (a) 宽带探测器的装置结构示意图; (b) Cr/Ce/Mn-LC, BHJ, CsPbI<sub>4</sub>: Er<sup>3+</sup> PQDs 和 CsPbI<sub>4</sub>: Er<sup>3+</sup> PQDs/BHJ 薄膜的吸收 光谱和Cr/Ce/Mn-LC的光致发光光谱;(c)不同器件以及商用硅电池的探测率。S1:ITO/ETL/CsPbI3/Ag,S2:ITO/ ETL/CsPbI<sub>3</sub>: Er<sup>3+</sup>(7.7%) PQDs/Ag, S3: ITO/ETL/CsPbI<sub>3</sub>: Er<sup>3+</sup>(7.7%) PQDs/BHJ/Ag, S4: Cr/Ce/Mn-LC/ITO/ETL/CsPbI<sub>3</sub>: Er<sup>3+</sup>(7.7%) PQDs/BHJ/Ag<sup>[27]</sup>。
- Fig.10 (a)Schematic diagram of the device structure of the broadband detector. (b)Absorption spectra of Cr/Ce/Mn-LC, BHJ, CsPbI<sub>3</sub>: Er<sup>3+</sup> PQDs and CsPbI<sub>3</sub>: Er<sup>3+</sup> PQDs/BHJ films and photoluminescence spectra of Cr/Ce/Mn-LC. (c) Detection rates for different devices as well as commercial silicon cells. S1: ITO/ETL/CsPbI<sub>3</sub>/Ag, S2: ITO/ETL/CsPbI<sub>3</sub>: Er<sup>3+</sup>(7.7%) PQDs/Ag, S3: ITO/ETL/CsPbI<sub>4</sub>: Er<sup>3+</sup> (7.7%) PQDs/BHJ/Ag, S4: Cr/Ce/Mn-LC/ITO/ETL/CsPbI<sub>4</sub>: Er<sup>3+</sup> (7.7%) PQDs/ BHJ/Ag<sup>[27]</sup>.

量子点结合有机异质结光电材料(图10(a)),可 以使响应范围覆盖400~1000 nm(图10(b)),与 Si探测器的探测范围相当。在此基础上,再引入 量子剪裁荧光材料CsPbCl<sub>3</sub>:Ce<sup>3+</sup>,Yb<sup>3+</sup>,进一步使光 电响应范围拓展为200~1000 nm(图10(c))。由 于铅卤钙钛矿的光电响应能力要高于Si材料的 光电响应能力,所以该光电探测器在整个光谱响 应范围内的探测能力要比相应的基于硅的荧光转 换型探测器提高2个数量级,达到10<sup>12</sup>~10<sup>13</sup> Jones。 当然,这种探测器在响应时间上还无法与硅基探 测器相媲美<sup>[27]</sup>。

## 5 总结与展望

稀土材料与铅卤钙钛矿材料的结合,在发光、光 伏器件、光电探测等方面都诞生了令人意想不到的 "新生儿"。首先,在发光方面,新型稀土掺杂钙钛矿 量子剪裁发光材料(CsPbCl<sub>3</sub>:Yb<sup>3+</sup>)的出现突破了量 子剪裁发光材料在Si太阳能电池应用领域数十年难 以解决的瓶颈问题;稀土掺杂的量子电致发光材料 设计(CsPbCl<sub>3</sub>:Sm<sup>3+</sup>、CsPbCl<sub>3</sub>:Eu<sup>3+</sup>)是最早实现的、基 于铅卤钙钛矿单一材料获得白光发射的器件策略。 Yb<sup>3+</sup>、Er<sup>3+</sup>共掺杂的CsPbCl<sub>3</sub>薄膜发光材料不仅使钙 钛矿 LED 的电致发光波长拓展到了光通讯的中心 窗口,而且表现出了远远超越稀土配合物电致发光 材料的外量子效率和输出功率密度。CsPbCl<sub>3</sub>:Eu<sup>3+</sup> 量子点成为探测钙钛矿在极端高压条件下微观结构 演化的"最坚强"探针。其次,在光电探测器件方面, 稀土Ce3+的5d电子组态与铅卤钙钛矿的耦合赋予了 钙钛矿材料在深紫外区域超灵敏的探测能力;钙钛 矿材料与稀土上转换发射中心/纳米粒子的结合可 以实现基于稀土离子 Nd3+、Yb3+、Er3+等4f-4f 跃迁的 多波长、窄谱带的红外线检测,适合于对多个红外靶 标的跟踪;而量子剪裁材料与Si探测器和宽带红外 探测器的结合,可以使覆盖200~1100 nm的宽光谱 检测更加灵敏、更加便捷。另外,在钙钛矿太阳能电 池应用方面,稀土掺杂材料可以大幅度提高钙钛矿 光伏材料和器件的结构稳定性、抗水氧能力,也可以 调高载流子修饰层(电子修饰层与空穴修饰层)与钙 钛矿层的能级匹配,提高器件的开路电压和容忍因 子。钙钛矿器件中荧光转换材料的引入是拓展器件 的红外响应范围、减小高能光子表面热损耗诱导的 器件性能损失和提升器件抗辐照能力的重要途径。

总之,稀土材料与铅卤钙钛矿的结合是一次 传统与现代的碰撞,是一次力与美的交融。这种 交汇对于稀土新材料和钙钛矿光电器件的发展来 讲,可以说是当下值得,未来可期。本文作者感到 欣幸,能够参与到这碰撞、交融与创造的过程之 中,为其发展尽一丝绵薄之力!

本文专家审稿意见及作者回复内容的下载地址: http://cjl.lightpublishing.cn/thesisDetails#10.37188/ CJL.20220391.

#### 参考文 献:

- [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
- [ 2 ] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition
  [J]. Nature, 2013, 501(7467): 395-398.
- [ 3 ] PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides [J]. Nature, 2023, DOI: 10. 1038/S41586-023-05825-y.
- [4] AL-ASHOURI A, KÖHNEN E, LI B, MAGOMEDOV A, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300-1309.
- [ 5 ] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 60) [J]. Prog. Photovolt. Res. Appl., 2022, 30(7): 687-701.
- [ 6 ] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX<sub>3</sub>, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696.
- [7] SHEN X Y, ZHANG Y, KERSHAW S V, et al. Zn-alloyed CsPbI<sub>3</sub> nanocrystals for highly efficient perovskite light-emitting devices [J]. Nano Lett., 2019, 19(3): 1552-1559.
- [8] XIE Y J, PENG B, BRAVIĆ I, et al. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium

doping [J]. Adv. Sci., 2020, 7(20): 2001698-1-9.

- [9] YANG J N, SONG Y, YAO J S, et al. Potassium bromide surface passivation on CsPbI<sub>3-x</sub>Br<sub>x</sub> nanocrystals for efficient and stable pure red perovskite light-emitting diodes [J]. J. Am. Chem. Soc., 2020, 142(6): 2956-2967.
- [10] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245-248.
- [11] MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598.
- [12] ZHAO C Y, WU W P, ZHAN H M, et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes [J]. Angew. Chem. Int. Ed., 2022, 61(13): e202117374-1-5.
- [ 13 ] DENG Y Z, PENG F, LU Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage [J]. Nat. Photon., 2022, 16(7): 505-511.
- [14] WANG Y K, YUAN F L, DONG Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI<sub>3</sub> perovskite [J]. Angew. Chem. Int. Ed., 2021, 60(29): 16164-16170.
- [ 15 ] JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by cospacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-8.
- [ 16 ] WANG Y K, SINGH K, LI J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids [J]. Adv. Mater., 2022, 34(21): 2200854-1-6.
- [17] WEI Q, LI X J, LIANG C, et al. Recent progress in metal halide perovskite micro- and nanolasers [J]. Adv. Opt. Mater., 2019, 7(17): 1900080-1-33.
- [ 18 ] DONG H Y, ZHANG C H, LIU X L, et al. Materials chemistry and engineering in metal halide perovskite lasers [J]. Chem. Soc. Rev., 2020, 49(3): 951-982.
- [19] BAO C X, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications [J]. Adv. Mater., 2018, 30(38): 1803422-1-8.
- [20] PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties [J]. Nano Lett., 2017, 17(12): 8005-8011.
- [21] HU Q S, LI Z, TAN Z F, et al. Rare earth ion-doped CsPbBr<sub>3</sub> nanocrystals [J]. Adv. Opt. Mater., 2018, 6(2): 1700864-1-5.
- [ 22 ] YAO J S, GE J, HAN B N, et al. Ce<sup>3+</sup>-doping to modulate photoluminescence kinetics for efficient CsPbBr<sub>3</sub> nanocrystals based light-emitting diodes [J]. J. Am. Chem. Soc. , 2018, 140(10): 3626-3634.
- [23] ZHU X, GE L, WANG Y, et al. Recent advances in enhancing and enriching the optical properties of cl-based CsPbX<sub>3</sub> nanocrystals [J]. Adv. Opt. Mater., 2021, 9(16): 2100058-1-17.
- [24] MA X H, YANG L Q, LEI K X, et al. Doping in inorganic perovskite for photovoltaic application [J]. Nano Energy, 2020, 78: 105354.
- [ 25 ] ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells [J]. Adv. Mater., 2017, 29(42): 1704149-1-6.
- [ 26 ] SUN R, LU P, ZHOU D L, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes [J]. ACS Energy Lett., 2020, 5(7): 2131-2139.
- [ 27 ] DING N, WU Y J, XU W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared [J]. Light Sci. Appl., 2022, 11(1): 91-1-13.
- [ 28 ] PAN G C, BAI X, SHEN X Y, et al. Bright red YCl<sub>3</sub>-promoted CsPbI<sub>3</sub> perovskite nanorods towards efficient light-emitting diode [J]. Nano Energy, 2021, 81: 105615-1-8.
- [29] ZHOU D L, SUN R, XU W, et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications [J]. Nano Lett., 2019, 19(10): 6904-6913.
- [ 30 ] LYU J, DONG B, PAN G C, et al. Ni<sup>2+</sup> and Pr<sup>3+</sup> co-doped CsPbCl<sub>3</sub> perovskite quantum dots with efficient infrared emission at 1 300 nm [J]. Nanoscale, 2021, 13(39): 16598-16607.
- [31] LUO J J, YANG L B, TAN Z F, et al. Efficient blue light emitting diodes based on europium halide perovskites [J]. Adv. Mater., 2021, 33(38): 2101903-1-9.
- [32] HUANG J M, LEI T, SIRON M, et al. Lead-free cesium europium halide perovskite nanocrystals [J]. Nano Lett.,

2020, 20(5): 3734-3

- [ 33 ] LIU X L, CUI D L, WANG Q, et al. Photoluminescence enhancement of ZrO<sub>2</sub>/Rhodamine B nanocomposites [J]. J. Mater. Sci., 2005, 40(5): 1111-1114.
- [ 34 ] LIU Y N, PAN G C, WANG R, et al. Considerably enhanced exciton emission of CsPbCl<sub>3</sub> perovskite quantum dots by the introduction of potassium and lanthanide ions [J]. Nanoscale, 2018, 10(29): 14067-14072.
- [ 35 ] CORTECCHIA D, MRÓZ W, FOLPINI G, et al. Layered perovskite doping with Eu<sup>3+</sup> and β-diketonate Eu<sup>3+</sup> complex [J]. Chem. Mater., 2021, 33(7): 2289-2297.
- [ 36 ] WU R X, HAN P G, ZHENG D Y, et al. All-inorganic rare-earth-based double perovskite nanocrystals with near-infrared emission [J]. Laser Photonics Rev., 2021, 15(11): 2100218-1-7.
- [37] LEE M, CHUNG H, HONG S V, et al. Dynamically tunable multicolor emissions from zero-dimensional Cs<sub>3</sub>LnCl<sub>6</sub>(Ln: europium and terbium) nanocrystals with wide color gamut [J]. Nanoscale, 2023, 15(4): 1513-1521.
- [ 38 ] BAHMANI JALALI H, PIANETTI A, ZITO J, et al. Cesium manganese bromide nanocrystal sensitizers for broadband Vis-to-NIR downshifting [J]. ACS Energy Lett., 2022, 7(5): 1850-1858.
- [ 39 ] ZENG M, ARTIZZU F, LIU J, *et al.* Boosting the Er<sup>3+</sup> 1.5 μm luminescence in CsPbCl<sub>3</sub> perovskite nanocrystals for photonic devices operating at telecommunication wavelengths. *ACS Appl. Nano Mater.*, 2020, 3(5): 4699-4707.
- [40] CHEN N, CAI T, LI W H, et al. Yb- and Mn-doped lead-free double perovskite Cs<sub>2</sub>AgBiX<sub>6</sub>(X = Cl<sup>-</sup>, Br<sup>-</sup>) nanocrystals
   [J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16855-16863.
- [41] MILSTEIN T J, KLUHERZ K T, KROUPA D M, et al. Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl<sub>1-x</sub>Br<sub>x</sub>)<sub>3</sub> perovskite nanocrystals [J]. Nano Lett., 2019, 19(3): 1931-1937.
- [42] MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX<sub>3</sub>(X = Cl, Br, or I) perovskite nanocrystals for downconversion emission [J]. Chem. Mater., 2018, 30(22): 8170-8178.
- [43] LI H F, LIU X Q, ZHOU D L, et al. Realization of 1.54-μm light-emitting diodes based on Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped CsPbCl<sub>3</sub> films [J]. Adv. Mater., 2023, doi.org/10.1002/adma.202300118.
- [44] WEGH R T, DONKER H, OSKAM K D, et al. Visible quantum cutting in ligdf<sub>4</sub>: Eu<sup>3+</sup> through downconversion [J]. Science, 1999, 283(5402): 663-666.
- [45] DEXTER D L. Possibility of luminescent quantum yields greater than unity [J]. Phys. Rev., 1957, 108(3): 630-633.
- [46] ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci., 2010, 55(5): 353-427.
- [47] PIPER W W, DELUCA J A, HAM F S. Cascade fluorescent decay in Pr<sup>3+</sup>-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light [J]. J. Lumin., 1974, 8(4): 344-348.
- [48] TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3): 1668-1674.
- [49] JI Y N, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection [J]. Light Sci. Appl., 2020, 9(1): 184-1.
- [ 50 ] DING N, XU W, ZHOU D L, et al. Extremely efficient quantum-cutting Cr<sup>3+</sup>, Ce<sup>3+</sup>, Yb<sup>3+</sup> tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70% [J]. Nano Energy, 2020, 78: 105278.
- [51] KROUPA D M, ROH J Y, MILSTEIN T J, et al. Quantum-cutting ytterbium-doped CsPb(Cl<sub>1-x</sub>Br<sub>x</sub>)<sub>3</sub> perovskite thin films with photoluminescence quantum yields over 190% [J]. ACS Energy Lett., 2018, 3(10): 2390-2395.
- [52] MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl<sub>3</sub> nanocrystals [J]. Nano Lett., 2018, 18(6): 3792-3799.
- [53] ROBERT F S. Marrying two types of solar cells draws more power from the sun [J]. Science, 2019, aax6503.
- [54] SUN R, ZHOU D L, DING Y J, et al. Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling Förster energy transfer and specific defect clearance [J]. Light Sci. Appl., 2022, 11(1): 340-1-15.
- [55] ISHII A, MIYASAKA T. Sensitized Yb<sup>3+</sup> luminescence in CsPbCl<sub>3</sub> film for highly efficient near-infrared light-emitting diodes [J]. Adv. Sci., 2020, 7(4): 1903142-1-7.

- [ 56 ] ZHAO W Q, WANG P F, RAN G Z, et al. 1.54 μm Er<sup>3+</sup> electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode [J]. J. Phys. D: Appl. Phys., 2006, 39(13): 2711.
- [57] LI H F, LIU X Q, LYU C, *et al.* Enhanced 1.54 μm photo- and electroluminescence based on a perfluorinated Er( III) complex utilizing an iridium( III) complex as a sensitizer [J]. *Light Sci. Appl.*, 2020, 9: 32-1-10.
- [ 58 ] JING X L, ZHOU D L, SUN R, et al. Enhanced photoluminescence and photoresponsiveness of Eu<sup>3+</sup> Ions-doped CsPbCl<sub>3</sub> perovskite quantum dots under high pressure [J]. Adv. Funct. Mater., 2021, 31(31): 2100930-1-10.
- [ 59 ] MAZW, LIUZ, LUSY, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nat. Commun., 2018, 9(1): 4506-1-8.
- [ 60 ] WANG X Y, TIAN H, LI X, et al. Pressure effects on the structures and electronic properties of halide perovskite CsPbX<sub>3</sub>
   (X = I, Br, Cl) [J]. Phys. Chem. Chem. Phys., 2021, 23(5): 3479-3484.
- [61] LI M, PENG S, FANG S Y, et al. Synthesis of two-dimensional CsPb<sub>2</sub>X<sub>5</sub> (X = Br and I) with a stable structure and tunable bandgap by CsPbX<sub>3</sub> phase separation [J]. J. Phys. Chem. Lett., 2022, 13(11): 2555-2562.
- [ 62 ] HUANG S, JIAO M Z, WANG X, et al. A first-principles study on the structural and carrier transport properties of inorganic perovskite CsPbI<sub>3</sub> under pressure [J]. Crystals, 2022, 12(5): 648-1-9.
- [ 63 ] NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(17): 8970-8980.
- [64] JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects [J]. Chem. Rev., 2019, 119(5): 3036-3103.
- [ 65 ] BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323-356.
- [66] JUNG H S, PARK N G. Perovskite solar cells: from materials to devices [J]. Small, 2015, 11(1): 10-25.
- [67] PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Mater. Today, 2015, 18(2): 65-72.
- [ 68 ] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345 (6196): 542-546.
- [ 69 ] SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J]. Energy Environ. Sci., 2016, 9(6): 1989-1997.
- [70] CHEN W J, LI D, CHEN S S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance allinorganic perovskite/organic integrated solar cells [J]. Adv. Energy Mater., 2020, 10(35): 2000851-1-12.
- [71] HU L, ZHAO Q, HUANG S J, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture [J]. Nat. Commun., 2021, 12(1): 466-1-9.
- [72] EGGIMANN H J, PATEL J B, JOHNSTON M B, et al. Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells [J]. Nat. Commun., 2020, 11(1): 5525-1-11.
- [73] SHIZC, ZHOUDL, WUYJ, et al. Dual interfacial engineering to improve ultraviolet and near-infrared light harvesting for efficient and stable perovskite solar cells [J]. Chem. Eng. J., 2022, 435: 134792-1-12.
- [74] CHEN C, WU Y J, LIU L, et al. Interfacial engineering and photon downshifting of CsPbBr<sub>3</sub> nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells [J]. Adv. Sci., 2019, 6(11): 1802046-1-9.
- [75] CHEN X, XU W, SONG H W, et al. Highly efficient LiYF<sub>4</sub>: Yb<sup>3+</sup>, Er<sup>3+</sup> upconversion single crystal under solar cell spectrum excitation and photovoltaic application [J]. ACS Appl. Mater. Interfaces, 2016, 8(14): 9071-9079.
- [76] IN J J, LI H, CHEN C, *et al.* Improving efficiency and light stability of perovskite solar cells by incorporating YVO<sub>4</sub>: Eu<sup>3+</sup>, Bi<sup>3+</sup> nanophosphor into the mesoporous TiO<sub>2</sub> layer [J]. *ACS Appl. Energy Mater.*, 2018, 1(5): 2096-2102.
- [77] CHEN C, LI H, JIN J J, et al. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells [J]. Adv. Energy Mater., 2017, 7(20): 1700758-1-11.
- [78] ZHUANG X M, SUN R, ZHOU D L, et al. Synergistic effects of multifunctional lanthanides doped CsPbBrCl<sub>2</sub> quantum dots for efficient and stable MAPbI<sub>3</sub> perovskite solar cells [J]. Adv. Funct. Mater., 2022, 32(18): 2110346-1-14.
- [79] CHEN X F, XU L, CHEN C, et al. Rare earth ions doped NiO<sub>x</sub> hole transport layer for efficient and stable inverted perovskite solar cells [J]. J. Power Sources, 2019, 444: 227267-1-8.
- [80] LIU B, WANG Y Q, WU Y J, et al. Simultaneous bottom-up double-layer synergistic optimization by multifunctional fused-ring acceptor with electron-deficient core for stable planar perovskite solar cells with approaching 24% efficiency

[J]. Nano Energy, 2022, 99: 107368.

- [81] ZHOU D L, LIU D L, JIN J J, et al. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5(32): 16559-16567.
- [ 82 ] XU W, CHEN X, SONG H W. Upconversion manipulation by local electromagnetic field [J]. Nano Today, 2017, 17: 54-78.
- [83] WU Y J, DING N, ZHANG Y H, et al. Toward broad spectral response inverted perovskite solar cells: insulating quantum-cutting perovskite nanophosphors and multifunctional ternary organic bulk-heterojunction [J]. Adv. Energy Mater., 2022, 12(16): 2200005-1-13.
- [84] CHEN C, LI H, JIN J J, et al. Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer [J]. Nano Energy, 2017, 32: 165-173.
- [85] WUYJ, GAOYB, ZHUANGXM, et al. Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction [J]. Nano Energy, 2020, 77: 105181-1-10.
- [ 86 ] WU Y J, BI W B, SHI Z C, et al. Unraveling the dual-functional mechanism of light absorption and hole transport of Cu<sub>2</sub>Cd<sub>x</sub>Zn<sub>1-x</sub>SnS<sub>4</sub> for achieving efficient and stable perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2020, 12 (15): 17509-17518
- [ 87 ] LI H, CHEN C, JIN J J, et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells [ J]. Nano Energy, 2018, 50: 699-709.
- [ 88 ] LU H, DENG K M, YAN N N, et al. Efficient perovskite solar cells based on novel three-dimensional TiO<sub>2</sub> network architectures [J]. Sci. Bull., 2016, 61(10): 778-786.
- [89] CHEN C, LIU D, WU Y, et al. Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells [J]. Nano Energy, 2018, 53: 849-62.
- [90] CHEN X, XU W, DING N, et al. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells [J]. Adv. Funct. Mater., 2020, 30(30): 2003295-1-11..
- [91] ZHANG Y H, XU L, WU Y J, et al. Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells [J]. Nano Energy, 2021, 90: 106610.
- [92] CHEN C, LIU D L, ZHANG B X, et al. Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(20): 1703659-1-11.
- [ 93 ] WANG L G, ZHOU H P, HU J N, et al. A Eu<sup>3+</sup>-Eu<sup>2+</sup> ion redox shuttle imparts operational durability to Pb-I perovskite solar cells [J]. Science, 2019, 363(6424): 265-270.
- [94] XIONG Q, YANG L K, ZHOU Q, et al. NdCl<sub>3</sub> dose as a universal approach for high-efficiency perovskite solar cells based on low-temperature-processed SnO<sub>x</sub> [J]. ACS Appl. Mater. Interfaces, 2020, 12(41): 46306-46316.
- [ 95 ] HESSE S, ZIMMERMANN J, VON SEGGERN H, et al. CsEuBr<sub>3</sub>: crystal structure and its role in the photostimulation of CsBr: Eu<sup>2+</sup> [J]. J. Appl. Phys., 2006, 100(8): 083506-1-5.
- [96] ZHUANG X M, ZHOU D L, LIU S N, et al. Learning from plants: lycopene additive passivation toward efficient and "fresh" perovskite solar cells with oxygen and ultraviolet resistance [J]. Adv. Energy Mater., 2022, 12(25): 2200614-1-14.
- [ 97 ] MANDEL'TSVAIG Y B. Investigation of bremsstrahlung dosimeters based on a combination of semicronductor phototransducer and scintillator [J]. Biomed. Eng., 1967, 1(3): 139-143.
- [ 98 ] WU Y H, DING X H, SHI X Q, et al. Highly efficient infrared light-converting perovskite solar cells: direct electron injection from NaYF<sub>4</sub>: Yb<sup>3+</sup>, Er<sup>3+</sup> to the TiO<sub>2</sub> [J]. ACS Sustain. Chem. Eng., 2018, 6(11): 14004-14009.
- [99] XU F, GAO H P, LIANG J W, et al. Enhanced upconversion luminescence in Cu<sub>1.8</sub>S@NaYF<sub>4</sub>: Yb@ NaYF<sub>4</sub>: Yb, Er coreshell nanoparticles [J]. Ceram. Int., 2019, 45(17): 21557-21563.
- [100] WU J H, YANG Z W, QIU C Y, et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles [J]. Nanoscale, 2018, 10(17): 8023-8030.
- [101] VU T H Q, BONDZIOR B, STEFAŃSKA D, et al. Influence of temperature on near-infrared luminescence, energy transfer mechanism and the temperature sensing ability of La<sub>2</sub>MgTiO<sub>6</sub>: Nd<sup>3+</sup> double perovskites [J]. Sens. Actuators A Phys., 2021, 317: 112453-1-9.

- [102] ZI L, XU W, SUN R, et al. Lanthanide-doped MAPbI<sub>3</sub> single crystals: fabrication, optical and electrical properties, and multi-mode photodetection [J]. Chem. Mater., 2022, 34(16): 7412-7423.
- [103] YIN Z, ZHANG X R, ZHOU D L, et al. Enhanced upconversion luminescence on the plasmonic architecture of Au-Ag nanocages [J]. RSC Adv., 2016, 6(89): 86297-86300.
- [104] 宋宏伟,周东磊,白雪,等.稀土掺杂量子剪裁发光材料简述 [J].中国稀土学报,2022,40(2):169-180.
   SONG H W, ZHOU D L, BAI X, et al. A review: rare earth doped quantum cutting luminescent materials [J]. J. Chin. Soc. Rare Earths, 2022, 40(2): 169-180. (in Chinese).
- [105] SUN R, ZHOU D L, LU P, et al. In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors [J]. Nano Energy, 2022, 93: 106815.
- [106] SHAO L, LIU D, LYU J, et al. Near-infrared-pumped photon upconversion in CsPbI<sub>3</sub> and CaF<sub>2</sub>: Yb<sup>3+</sup>/Ho<sup>3+</sup> nanocomposites for bio-imaging application [J]. Mater. Today Phys., 2021, 21: 100495.
- [107] DING N, XU W, ZHOU D L, et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals [J]. Nano Energy, 2020, 76: 105103-1-9.
- [108] LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection [J]. Adv. Opt. Mater., 2021, 9(22): 2100423-1-8.
- [109] LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals [J]. Nano Lett., 2019, 19(1): 338-341.
- [110] COHEN T A, MILSTEIN T J, KROUPA D M, et al. Quantum-cutting Yb<sup>3+</sup>-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators [J]. J. Mater. Chem. A, 2019, 7(15): 9279-9288.
- [111] WU X W, LI H W, WANG K, et al. CH<sub>3</sub>NH<sub>3</sub>Pb<sub>1-x</sub>Eu<sub>x</sub>I<sub>3</sub> mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability [J]. RSC Adv., 2018, 8(20): 11095-11101.
- [112] XIANG W C, WANG Z W, KUBICKI D J, et al. Europium-doped CsPbI<sub>2</sub>Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205-214.
- [113] YANG S M, ZHAO H, HAN Y, et al. Europium and acetate co-doping strategy for developing stable and efficient CsPbI<sub>2</sub>Br perovskite solar cells [J]. Small, 2019, 15(46): 1904387-1-9.
- [114] CHEN L B, WU W, WANG J P, et al. Lanthanide stabilized all-inorganic CsPbI<sub>2</sub>Br perovskite solar cells with superior thermal resistance [J]. ACS Appl. Energy Mater., 2021, 4(4): 3937-3944.
- [115] DUAN J L, ZHAO Y Y, YANG X Y, et al. Lanthanide ions doped CsPbBr<sub>3</sub> halides for HTM-free 10. 14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1. 594 V [J]. Adv. Energy Mater., 2018, 8(31): 1802346-1-9.
- [116] JENA A K, KULKARNI A, SANEHIRA Y, et al. Stabilization of α-CsPbI<sub>3</sub> in ambient room temperature conditions by incorporating Eu into CsPbI<sub>3</sub> [J]. Chem. Mater., 2018, 30(19): 6668-6674.
- [117] CHEN S L, ZHANG T J, LIU X L, et al. Lattice reconstruction of La-incorporated CsPbI<sub>2</sub>Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells [J]. J. Mater. Chem. C, 2020, 8(10): 3351-3358.
- [118] LI S F, ZHU L N, KAN Z P, et al. A multifunctional additive of scandium trifluoromethanesulfonate to achieve efficient inverted perovskite solar cells with a high fill factor of 83. 80% [J]. J. Mater. Chem. A, 2020, 8(37): 19555-19560.
- [119] WANG K, ZHENG L Y, ZHU T, et al. Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations [J]. Nano Energy, 2019, 61: 352-360.
- [120] ARUMUGAM G M, XU C X, KARUNAKARAN S K, et al. Low threshold lasing from novel thulium-incorporated C(NH<sub>2</sub>)<sub>3</sub>PbI<sub>3</sub> perovskite thin films in Fabry-Pérot resonator [J]. J. Mater. Chem. C, 2018, 6(46): 12537-12546.
- [121] SONG Z L, XU W, WU Y J, et al. Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells [J]. Small, 2020, 16(40): 2001770-1-11.
- [122] KARUNAKARAN S K, ARUMUGAM G M, YANG W T, et al. Europium (II)-doped all-inorganic CsPbBr<sub>3</sub> perovskite solar cells with carbon electrodes [J]. Solar RRL, 2020, 4(11): 2000390.
- [123] WANG M, DENG K M, MENG L X, et al. Bifunctional ytterbium (III) chloride driven low-temperature synthesis of stable α-CsPbI<sub>3</sub> for high-efficiency inorganic perovskite solar cells [J]. Small Methods, 2020, 4(2): 1900652.
- [124] YANG Y, HAN D W, YANG Y, et al. Redox-inactive samarium( III) acetylacetonate as dopant enabling cation substitution and interfacial passivation for efficient and stable CsPbI₂Br perovskite solar cells [J]. APL Mater., 2020, 8(7):

071102-1-9.

- [125] PATIL J V, MALI S S, HONG C K. Boosting the stability of fully-inorganic perovskite solar cells through samarium doped CsPbI<sub>2</sub>Br perovskite [J]. ACS Sustain. Chem. Eng., 2020, 8(43): 16364-16371.
- [126] WANG Q, WANG X M, YANG Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement [J]. Nat. Commun., 2019, 10(1): 5633-1-8.
- [127] CHIBA T, SATO J, ISHIKAWA S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020, 12(48): 53891-53898.
- [128] SHEN X Y, WANG Z Y, TANG C Y, et al. Near-infrared LEDs based on quantum cutting-activated electroluminescence of ytterbium ions [J]. Nano Lett., 2023, 23(1): 82-90.
- [129] LI S R, HU Q S, LUO J J, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite [J]. Adv. Opt. Mater., 2019, 7(23): 1901098-1-6.
- [130] LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr<sub>3</sub> quantum dot glass for WLEDs [J]. Nanoscale, 2020, 12(12): 6630-6636.
- [131] CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb<sup>3+</sup>, Eu<sup>3+</sup> co-doped CsPbBr<sub>3</sub> QDs glass with highly stable and luminous adjustable for white LEDs [J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21434-21444.
- [132] ZHANG G D, WEI Y, DANG P P, et al. Facile solution synthesis of Bi<sup>3+</sup>/Yb<sup>3+</sup> ions co-doped Cs<sub>2</sub>Na<sub>0.6</sub>Ag<sub>0.4</sub>InCl<sub>6</sub> double perovskites with near-infrared emission [J]. Dalton Trans., 2020, 49(43): 15231-15237.
- [133] ZHU Y S, ZHU J Y, SONG H Z, et al. Samarium doping improves luminescence efficiency of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> perovskite quantum dots enabling efficient white light-emitting diodes [J]. J. Rare Earths, 2021, 39(4): 374-379.
- [134] WANG C Y, LIANG P, XIE R J, et al. Highly efficient lead-free (Bi, Ce) -codoped Cs<sub>2</sub>Ag<sub>0.4</sub>Na<sub>0.6</sub>InCl<sub>6</sub> double perovskites for white light-emitting diodes [J]. Chem. Mater., 2020, 32(18): 7814-7821.
- [135] HE Q Y, ZHANG Y Q, YU Y X, et al. Ultrastable Gd<sup>3+</sup> doped CsPbBrI<sub>2</sub> nanocrystals red glass for high efficiency WLEDs [J]. Chem. Eng. J., 2021, 411: 128530-1-7.
- [136] PAN G C, BAI X, XU W, et al. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet-white light-emitting diode [J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39040-39048.
- [137] WANG C, ZHAO G J. Codoping of lead-free double perovskites promotes near-infrared photoluminescence [J]. Angew. Chem. Int. Ed., 2021, 60(2): 540-542.
- [138] HUANG H, LI R f, JIN S L, et al. Ytterbium-doped CsPbCl<sub>3</sub> quantum cutters for near-infrared light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2021, 13(29): 34561-34571.
- [139] ZHAO J, PAN G C, ZHU Y X, et al. High-efficiency and wavelength-tunable near-infrared emission of lanthanide ions doped lead-free halide double perovskite nanocrystals toward fluorescence imaging [J]. ACS Appl. Mater. Interfaces, 2022, 14(37): 42215-42222.
- [140] NIE J H, ZHOU B, FANG S F, *et al.* Efficient multicolor and white photoluminescence in erbium- and holmium-incorporated Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb<sup>3+</sup> double perovskites [J]. *Chem. Mater.*, 2022, 34(14): 6288-6295.
- [141] JIN S L, LI R F, HUANG H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites [J]. Light Sci. Appl., 2022, 11(1): 52-1-13.
- [142] AHMED G H, EL-DEMELLAWI J K, YIN J, et al. Giant photoluminescence enhancement in CsPbCl<sub>3</sub> perovskite nanocrystals by simultaneous dual-surface passivation [J]. ACS Energy Lett., 2018, 3(10): 2301-2307.
- [143]MOON B J, KIM S J, LEE S, et al. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications [J]. Adv. Mater., 2019, 31(33): 1901716-1-7.
- [144] ZHENG L Y, WANG K, ZHU T, et al. Solution-processed ultrahigh detectivity photodetectors by hybrid perovskite incorporated with heterovalent neodymium cations [J]. ACS Omega, 2019, 4(14): 15873-15878.
- [145] RONG S S, XIAO Y Q, JIANG J, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr<sub>3</sub> single crystals [J]. J. Phys. Chem. C, 2020, 124(16): 8992-8.
- [146] DING N, SHAO L, XIE T Y, et al. Highly-sensitive, stable, and fast-response lead-free Cs<sub>2</sub>AgBiBr<sub>6</sub> double perovskite photodetectors enabled by synergistic engineering of doping Na<sup>+</sup>/Ce<sup>3+</sup> and integrating Ag nanoparticles film [J]. Laser Photonics Rev., 2022, 16(12): 2200301.



宋宏伟(1967-),男,黑龙江阿城人, 博士,教授,博士生导师,1996年于中 国科学院长春物理研究所获得博士学 位,主要从事稀土发光材料、光电子材 料与器件的研究。

E-mail: songhw@jlu.edu.cn



周东磊(1990-),男,山东日照人,博 士,副教授,博士生导师,2018年于吉 林大学获得博士学位,主要从事新型 稀土纳米发光材料、光电子能源器件 的应用研究。

E-mail: zhoudl@jlu. edu. cn

#### 青年编委简介

周东磊(1990-),博士,副教授,研究生导师,吉林大学"唐敖庆学者"青年学者,吉林省青年科技人才托举工程入选者。2018—2020年在新加坡南洋理工大学从事博士后研究,2020年聘为吉林大学副教授,主要从事新型稀土纳米发光材料、光电子能源器件的应用研究。在Advanced Materials, ACS Nano, Nano Letters, Light: Science & Applications, Advanced Energy Materials, Advanced Functional Materials, ACS Energy Letters等学术期刊发表SCI论文80余篇,引用超过3 300余次,H因子30,出版英文专著一章(Taylor & Francis出版社)。承担国家自然科学基金面上项目、国家自然科学基金青年项目、吉林省自然科学基金等项目,获2019年吉林省自然科学一等奖(排名第九),受邀在国际国内会议上做邀请报告10余次。担任《发光学报》青年编委,Nanomaterials, Frontiers in Chemistry等期刊客座编辑。

主要研究成果:1.研制了新型宽谱带、强吸收的稀土掺杂钙钛矿纳米晶,获得了高效量子剪裁发光,并将其应用于提高晶硅电池的光电转换效率,被*Science*杂志评价为"近年来最激动人心的工作之一"。2.基于新型稀土掺杂钙钛矿材料,研制了单组分的白光电致发光LED器件,获得了基于Er的近红外电致发光LED。3.采用半导体表面等离子体调控稀土上转换发光,发现了双光子吸收增强稀土上转换荧光的新原理,获得了三个数量级的上转换荧光增强,并将其应用于高对比度、高亮度的角度防伪和光伏应用。4.研制了紫外与红外双谱带响应的稀土光电探测器,发现了稀土在高压极限环境下依然保持高效发光的内在机制,构建了可视化探测阵列系统;开发了稀土量子点、天然材料敏化的高效钙钛矿太阳能电池,总结了稀土离子提升器件效率的关键原理。

#### "稀土纳米光电子器件实验室"简介

"稀土纳米光电子器件实验室"隶属于吉林大学电子科学与工程学院,实验室以新型稀土发光材料为基础,面向光 伏、光电探测器、发光二极管、太阳能电池、新型传感器和生物医药等领域的问题和瓶颈,开发光伏能源、光纤通信、信息 处理、显示、传感和生物医疗等领域的应用技术。主要研究内容包括:新型稀土掺杂发光材料、局域光场调控、稀土掺杂 量子剪裁发光、发光二极管、光电探测器、钙钛矿太阳能电池、新型气体传感器和生物抗菌抗炎等。

研究团队集合了具有博士学位的物理、化学、电子教育背景的7名教师,包括国家杰青、万人计划领军人才1人,国家 级青年人才3名,副高级以上研究人员7名;同时在读的博士、硕士研究生40余名。

