浏览全部资源
扫码关注微信
暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
[ "谢怿(1997-),男,广东湛江人,硕士研究生,2020年于天津理工大学获得学士学位,主要从事钙钛矿太阳能电池中原子层沉积的研究。E-mail: sayie210@163.com" ]
[ "吴绍航(1987-),男,广西贵港人,博士,副研究员,2015年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事高效稳定的钙钛矿太阳电池的研究。E-mail: wushaohang@jnu.edu.cn" ]
收稿日期:2022-09-06,
修回日期:2022-09-26,
纸质出版日期:2023-02-05
移动端阅览
谢怿,吴绍航,高彦艳等.通过氧源调控原子层沉积的SnOx层实现高效稳定的钙钛矿太阳能电池[J].发光学报,2023,44(02):337-345.
XIE Yi,WU Shaohang,GAO Yanyan,et al.Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnOx Layer via Oxygen Sources[J].Chinese Journal of Luminescence,2023,44(02):337-345.
谢怿,吴绍航,高彦艳等.通过氧源调控原子层沉积的SnOx层实现高效稳定的钙钛矿太阳能电池[J].发光学报,2023,44(02):337-345. DOI: 10.37188/CJL.20220325.
XIE Yi,WU Shaohang,GAO Yanyan,et al.Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnOx Layer via Oxygen Sources[J].Chinese Journal of Luminescence,2023,44(02):337-345. DOI: 10.37188/CJL.20220325.
原子层沉积的SnO
x
薄膜具有良好的均匀性和致密性,常被用于提升倒置平面结构钙钛矿太阳能电池的稳定性。而SnO
x
薄膜的特性对器件能量转换效率(Power conversion efficiency,PCE)有着重要影响。本文通过氧源(H
2
O、O
3
)调控SnO
x
薄膜的能级和导电性,提升器件PCE。结果表明,O
3
作为单一氧源的SnO
x
薄膜(记为O
3
‐SnO
x
)具有较优的能级排列;而只有H
2
O作氧源的SnO
x
薄膜(记为H
2
O‐SnO
x
)具有较高的电导率。而采用O
3
和H
2
O混合氧源制备的SnO
x
(记为MIX‐SnO
x
),则兼顾了能级匹配和良好的导电性,有效提升器件的PCE,达到20.9%。不仅如此,得益于SnO
x
薄膜的致密结构,有效避免了外部水氧的入侵和内部材料的分解流失,从而提升了器件稳定性,在85 ℃(氮气气氛)下老化超过646 h仍能维持初始PCE的86%以上。
SnO
x
deposited by atomic layer deposition exhibits uniform and dense nature, which is commonly used to improve the stability of inverted planar perovskite solar cells. Meanwhile, the characteristics of SnO
x
films have an essential impact on power conversion efficiency(PCE) of devices. In this paper, the characteristics of atomic-layer-deposited SnO
x
are adjusted by the oxygen sources(H
2
O, O
3
), including energy level and conductivity, so as to achieve the improvement of PCE of devices. The results show that the SnO
x
film with O
3
as a single oxygen source has good energy level alignment. SnO
x
, which only has water as an oxygen source (denoted H
2
O-SnO
x
), performs higher electrical conductivity. While, taking advantage of mentioned sources, the SnO
x
(denoted as MIX-SnO
x
) not only obtains good energy level alignment, but also excellent conductivity, which effectively improves the PCE of the devices, reaching 20.9%. Moreover, thanks to the denseness of SnO
x
film, it can largely prevent the ingress of moisture into devices, and also inhibit the decomposition of perovskite, dramatically enhancing the stability of perovskite solar cells, which can retain 86% of initial PCE after aging at 85 ℃ (nitrogen atmosphere) for more than 646 h.
BOYD C C , CHEACHAROEN R , LEIJTENS T , et al . Understanding degradation mechanisms and improving stability of perovskite photovoltaics [J]. Chem. Rev. , 2018 , 119 ( 5 ): 3418 - 3451 . doi: 10.1021/acs.chemrev.8b00336 http://dx.doi.org/10.1021/acs.chemrev.8b00336
ZHOU H P , CHEN Q , LI G , et al . Interface engineering of highly efficient perovskite solar cells [J]. Science , 2014 , 345 ( 6196 ): 542 - 546 . doi: 10.1126/science.1254050 http://dx.doi.org/10.1126/science.1254050
CHEN W , WU Y Z , YUE Y F , et al . Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J]. Science , 2015 , 350 ( 6263 ): 944 - 948 . doi: 10.1126/science.aad1015 http://dx.doi.org/10.1126/science.aad1015
ERDENEBILEG E , WANG H , LI J , et al . Low-temperature atomic layer deposited electron transport layers for co-evaporated perovskite solar cells [J]. Solar RRL , 2022 , 6 ( 1 ): 2100842 . doi: 10.1002/solr.202100842 http://dx.doi.org/10.1002/solr.202100842
SEO S , JEONG S , PARK H , et al . Atomic layer deposition for efficient and stable perovskite solar cells [J]. Chem. Commun. , 2019 , 55 ( 17 ): 2403 - 2416 . doi: 10.1039/c8cc09578g http://dx.doi.org/10.1039/c8cc09578g
RAIFORD J A , OYAKHIRE S T , BENT S F . Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells [J]. Energy Environ. Sci. , 2020 , 13 ( 7 ): 1997 - 2023 . doi: 10.1039/d0ee00385a http://dx.doi.org/10.1039/d0ee00385a
BRINKMANN K O , ZHAO J , POURDAVOUD N , et al . Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells [J]. Nat. Commun. , 2017 , 8 ( 1 ): 13938-1-9 . doi: 10.1038/ncomms13938 http://dx.doi.org/10.1038/ncomms13938
SEO S , JEONG S , BAE C , et al . Perovskite solar cells with inorganic electron-and hole-transport layers exhibiting long-term (≈500 h) stability at 85 ℃ under continuous 1 sun illumination in ambient air [J]. Adv. Mater. , 2018 , 30 ( 29 ): 1801010-1-8 . doi: 10.1002/adma.201801010 http://dx.doi.org/10.1002/adma.201801010
XIAO K , LIN Y H , ZHANG M , et al . Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules [J]. Science , 2022 , 376 ( 6594 ): 762 - 767 . doi: 10.1126/science.abn7696 http://dx.doi.org/10.1126/science.abn7696
REN N Y , ZHU C J , LI R J , et al . 50 ℃ low-temperature ALD SnO 2 driven by H 2 O 2 for efficient perovskite and perovskite/silicon tandem solar cells [J]. Appl. Phys. Lett. , 2022 , 121 ( 3 ): 033502-1-7 . doi: 10.1063/5.0091311 http://dx.doi.org/10.1063/5.0091311
YOO J J , SEO G , CHUA M R , et al . Efficient perovskite solar cells via improved carrier management [J]. Nature , 2021 , 590 ( 7847 ): 587 - 593 . doi: 10.1038/s41586-021-03285-w http://dx.doi.org/10.1038/s41586-021-03285-w
CHENG H E , TIAN D C , HUANG K C . Properties of SnO 2 films grown by atomic layer deposition [J]. Procedia Eng. , 2012 , 36 : 510 - 515 . doi: 10.1016/j.proeng.2012.03.074 http://dx.doi.org/10.1016/j.proeng.2012.03.074
DU X , DU Y , GEORGE S M . In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques [J]. J. Vac. Sci. Technol. A , 2005 , 23 ( 4 ): 581 - 588 . doi: 10.1116/1.1914810 http://dx.doi.org/10.1116/1.1914810
ELAM J W , BAKER D A , HRYN A J , et al . Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin [J]. J. Vac. Sci. Technol. A , 2008 , 26 ( 2 ): 244 - 252 . doi: 10.1116/1.2835087 http://dx.doi.org/10.1116/1.2835087
HU T , BECKER T , POURDAVOUD N , et al . Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers [J]. Adv. Mater. , 2017 , 29 ( 27 ): 1606656-1-9 . doi: 10.1002/adma.201606656 http://dx.doi.org/10.1002/adma.201606656
LEE J H , YOO M , KANG D H , et al . Selective SnO x atomic layer deposition driven by oxygen reactants [J]. ACS Appl. Mater. Interfaces , 2018 , 10 ( 39 ): 33335 - 33342 . doi: 10.1021/acsami.8b12251 http://dx.doi.org/10.1021/acsami.8b12251
MULLINGS M N , HÄGGLUND C , BENT S F . Tin oxide atomic layer deposition from tetrakis (dimethylamino) tin and water [J]. J. Vac. Sci. Technol. A , 2013 , 31 ( 6 ): 061503-1-8 . doi: 10.1116/1.4812717 http://dx.doi.org/10.1116/1.4812717
MACKUS A J M , MACISAAC C , KIM W H , et al . Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide [J]. J. Chem. Phys. , 2017 , 146 ( 5 ): 052802-1-11 . doi: 10.1063/1.4961459 http://dx.doi.org/10.1063/1.4961459
CHOI D W , MAENG W J , PARK J S . The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics [J]. Appl. Surf. Sci. , 2014 , 313 : 585 - 590 . doi: 10.1016/j.apsusc.2014.06.027 http://dx.doi.org/10.1016/j.apsusc.2014.06.027
CHOI D W , PARK J S . Highly conductive SnO 2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant [J]. Surf. Coat. Technol. , 2014 , 259 : 238 - 243 . doi: 10.1016/j.surfcoat.2014.02.012 http://dx.doi.org/10.1016/j.surfcoat.2014.02.012
LI F M , SHEN Z T , WENG Y J , et al . Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability [J]. Adv. Funct. Mater. , 2020 , 30 ( 45 ): 2004933-1-9 . doi: 10.1002/adfm.202004933 http://dx.doi.org/10.1002/adfm.202004933
LEE M , KIM D , LEE Y K , et al . Indene-C 60 bisadduct electron-transporting material with the high LUMO level enhances open-circuit voltage and efficiency of tin-based perovskite solar cells [J]. ACS Appl. Energy Mater. , 2020 , 3 ( 6 ): 5581 - 5588 . doi: 10.1021/acsaem.0c00535 http://dx.doi.org/10.1021/acsaem.0c00535
XU C Q , ZHANG Y W , LUO P F , et al . Comparative study on TiO 2 and C 60 electron transport layers for efficient perovskite solar cells [J]. ACS Appl. Energy Mater. , 2021 , 4 ( 6 ): 5543 - 5553 . doi: 10.1021/acsaem.1c00226 http://dx.doi.org/10.1021/acsaem.1c00226
MACCO B , WU Y , VANHEMEL D , et al . High mobility In 2 O 3 ∶H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization [J]. Phys. Status Solidi (RRL)‐Rapid Res. Lett. , 2014 , 8 ( 12 ): 987 - 990 . doi: 10.1002/pssr.201409426 http://dx.doi.org/10.1002/pssr.201409426
KOIDA T , SAI H , KONDO M . In 2 O 3 ∶H transparent conductive oxide films with high mobility and near infrared transparency for optoelectronic applications [J]. Surf. Eng. , 2012 , 28 ( 2 ): 102 - 107 . doi: 10.1179/1743294411y.0000000053 http://dx.doi.org/10.1179/1743294411y.0000000053
SUCKOW S . 2 / 3 -Diode Fit [EB/OL]. 2014-12-03 . https://nanohub.org/resources/14300 https://nanohub.org/resources/14300 .
BERHE T A , SU W N , CHEN C H , et al . Organometal halide perovskite solar cells: degradation and stability [J]. Energy Environ. Sci. , 2016 , 9 ( 2 ): 323 - 356 . doi: 10.1039/c5ee02733k http://dx.doi.org/10.1039/c5ee02733k
CONINGS B , DRIJKONINGEN J , GAUQUELIN N , et al . Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Adv. Energy Mater. , 2015 , 5 ( 15 ): 1500477-1-8 . doi: 10.1002/aenm.201500477 http://dx.doi.org/10.1002/aenm.201500477
DUNFIELD S P , BLISS L , ZHANG F , et al . From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules [J]. Adv. Energy Mater. , 2020 , 10 ( 26 ): 1904054-1-35 . doi: 10.1002/aenm.201904054 http://dx.doi.org/10.1002/aenm.201904054
0
浏览量
340
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构