浏览全部资源
扫码关注微信
暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
[ "郭日朗(1997-),男,广东中山人,硕士研究生,2020年于五邑大学获得学士学位,主要从事钙钛矿太阳电池的研究。 E-mail: longsun@stu2020.jnu.edu.cn" ]
[ "吴绍航(1987-),男,广西贵港人,博士,副研究员,2015年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事高效稳定的钙钛矿太阳电池的研究。 E-mail: wushaohang@jnu.edu.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-06-17,
修回日期:2022-07-14,
移动端阅览
郭日朗,吴绍航,张翠苓等.反式平面钙钛矿太阳电池的光学损失分析[J].发光学报,2022,43(12):1983-1990.
GUO Ri-lang,WU Shao-hang,ZHANG Cui-ling,et al.Optical Loss Analysis of Inverted Planar Perovskite Solar Cells[J].Chinese Journal of Luminescence,2022,43(12):1983-1990.
郭日朗,吴绍航,张翠苓等.反式平面钙钛矿太阳电池的光学损失分析[J].发光学报,2022,43(12):1983-1990. DOI: 10.37188/CJL.20220241.
GUO Ri-lang,WU Shao-hang,ZHANG Cui-ling,et al.Optical Loss Analysis of Inverted Planar Perovskite Solar Cells[J].Chinese Journal of Luminescence,2022,43(12):1983-1990. DOI: 10.37188/CJL.20220241.
实现高效率光伏器件的先决条件之一是入射光被吸光层有效吸收,因此系统分析钙钛矿光伏电池中的光学损失机制,优化吸光层的光吸收,对于提升效率十分重要。本文针对反式平面钙钛矿太阳电池,结合电池外量子效率(EQE)、薄膜光吸收特性和理论模拟,对比研究钙钛矿吸光层和[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)界面层厚度变化对光生电流的影响。研究结果显示,除了寄生吸收以外,界面层对光场的调节可以影响器件中吸光层的光吸收。模拟结果显示,660 nm的钙钛矿薄膜和40 nm的PCBM薄膜可作为优化的选择,其对应积分电流为24.93 mA/cm
2
。本文还探究了PbI
2
层的加入对钙钛矿吸光层吸收特性的影响,结果显示PbI
2
聚集在钙钛矿层靠入射光侧时会导致显著的光学损失,而PbI
2
聚集在钙钛矿层靠背电极一侧时,则影响相对较小。
One of the prerequisites for realizing high efficiency photovoltaic devices is that the incident light is effectively absorbed by the light absorbing layer. Therefore, it is very important to improve efficiency to systematically analyze the optical loss mechanism of perovskite photovoltaic cells and optimize the light absorption of the light absorbent layer. In this paper, for inverted planar perovskite solar cells, combining with the external quantum efficiency(EQE) of the cell, the light absorption characteristics of the film and theoretical simulation, the effects of the thickness changes of perovskite thin film as the light absorption layer and [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) thin film as the interface layer on photogenerated current were compared and studied. The results show that, in addition to parasitic absorption, the adjustment of the optical field by the interface layer can affect the optical absorption of the light absorption layer in the device. The simulation results show that 660 nm perovskite film and 40 nm PCBM film can be used as the optimal choice, and the corresponding integral current is 24.93 mA/cm
2
. This paper also explored the influence of the addition of PbI
2
layer on the absorption characteristics of the perovskite light absorbing layer. The results indicate that when PbI
2
accumulates on the side of the perovskite layer near the incident light, it leads to significant optical loss. However, when PbI
2
accumulates on the side of the perovskite layer near the back electrode, the influence is relatively small.
钙钛矿光学分析传输矩阵模型光吸收
perovskiteoptical analysistransfer matrix modellight absorption
National Renewable Energy Laboratory. Best research-cell efficiency chart [EB/OL]. (2022-01-26)[2022-06-14]. https://www.nrel.gov/pv/cell-efficiency.htmlhttps://www.nrel.gov/pv/cell-efficiency.html.
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 32(3): 510-519.
KOÇ M, SOLTANPOOR W, BEKTAŞ G, et al. Guideline for optical optimization of planar perovskite solar cells [J]. Adv. Opt. Mater., 2019, 7(23): 1900944-1-10.
BALL J M, STRANKS S D, HÖRANTNER M T, et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells [J]. Energy Environ. Sci., 2015, 8(2): 602-609.
LIN Q Q, ARMIN A, NAGIRI R C R, et al. Electro-optics of perovskite solar cells [J]. Nat. Photonics, 2015, 9(2): 106-112.
MA S, QIAO W Y, CHENG T, et al. Optical-electrical-chemical engineering of PEDOT∶PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3902-3911.
VAN EERDEN M, JAYSANKAR M, HADIPOUR A, et al. Optical analysis of planar multicrystalline perovskite solar cells [J]. Adv. Opt. Mater., 2017, 5(18): 1700151-1-10.
李祥, 文尚胜, 姚日晖, 等. 基于传输矩阵法的聚合物太阳能电池光学性能分析 [J]. 光学学报, 2012, 32(6): 0631002-1-8.
LI X, WEN S S, YAO R H, et al. Analysis of optical performance on polymer solar cell based on transfer matrix method [J]. Acta Opt. Sinica, 2012, 32(6): 0631002-1-8. (in Chinese)
DENNLER G, FORBERICH K, SCHARBER M C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5): 054516-1-7.
RAOULT E, BODEUX R, JUTTEAU S, et al. Optical characterizations and modelling of semitransparent perovskite solar cells for tandem applications [C]. Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 2019: 9-13.
CHEN Y H, CHEN C W, HUANG Z Y, et al. Microcavity-embedded, colour-tuneable, transparent organic solar cells [J]. Adv. Mater., 2014, 26(7): 1129-1134.
PETTERSSON L A A, ROMAN L S, INGANÄS O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films [J]. J. Appl. Phys., 1999, 86(1): 487-496.
CHEN C W, HSIAO S Y, CHEN C Y, et al. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells [J]. J. Mater. Chem. A, 2015, 3(17): 9152-9159.
BURKHARD G F, HOKE E T, MCGEHEE M D. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells [J]. Adv. Mater., 2010, 22(30): 3293-3297.
ZHAO X Y, MI B X, GAO Z Q, et al. Recent progress in the numerical modeling for organic thin film solar cells [J]. Sci. China Phys., Mech. Astron., 2011, 54(3): 375-387.
LIU B, SOE C M M, STOUMPOS C C, et al. Optical properties and modeling of 2D perovskite solar cells [J]. Sol. RRL, 2017, 1(8): 1700062-1-8.
ZHANG H, TOUDERT J. Optical management for efficiency enhancement in hybrid organic-inorganic lead halide perovskite solar cells [J]. Sci. Technol. Adv. Mater., 2018, 19(1): 411-424.
SHI P J, DING Y, REN Y K, et al. Template‐assisted formation of high-quality α-phase HC(NH2)2PbI3 perovskite solar cells [J]. Adv. Sci., 2019, 6(21): 1901591-1-10.
FARROKHIFAR M, ROSTAMI A, SADOOGI N. Opto-electrical simulation of organic solar cells [C]. Proceedings of 2014 European Modelling Symposium, Pisa, 2014: 507-512.
MAJUMDER C, RAI A, BOSE C. Performance optimization of bulk heterojunction organic solar cell [J]. Optik, 2018, 157: 924-929.
IAKOBSON O D, GRIBKOVA O L, TAMEEV A R, et al. A common optical approach to thickness optimization in polymer and perovskite solar cells [J]. Sci. Rep., 2021, 11(1): 5005-1-6.
曹婧. 基于传输矩阵法的有机太阳能电池的光学计算研究 [D]. 广州: 暨南大学, 2013.
CAO J. Research on Optical Calculation of Organic Solar Cells Based on Transfer Matrix Method [D]. Guangzhou: Jinan University, 2013. (in Chinese)
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
LI Z, LI B, WU X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells [J]. Science, 2022, 376(6591): 416-420.
JIANG Q, CHU Z M, WANG P Y, et al. Planar-structure perovskite solar cells with efficiency beyond 21% [J]. Adv. Mater., 2017, 29(46): 1703852-1-7.
ZHAO Y C, LI Q, ZHOU W K, et al. Double-side-passivated perovskite solar cells with ultra-low potential loss [J]. Sol. RRL, 2019, 3(2): 1800296.
0
浏览量
407
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构