浏览全部资源
扫码关注微信
1.季华实验室, 广东 佛山 528000
2.季华恒烨(佛山)电子材料有限公司, 广东 佛山 528000
3.吉林大学 有机聚合物光电材料教育部工程研究中心, 吉林 长春 130012
[ "梁宝炎(1992-),男,河北衡水人,博士,2020年于吉林大学获得博士学位,主要从事有机发光材料与器件的开发。 E-mail: liangby@jihualab.ac.cn" ]
[ "毕海(1983-),男,黑龙江哈尔滨人,博士,特聘研究员,2014年于德国慕尼黑工业大学获得博士学位,主要从事有机半导体材料的开发、超分辨近场光学装备研发及单分子逻辑门器件 开发。 E-mail: bihai@jihualab.ac.cn" ]
[ "王悦(1962-),男,黑龙江阿城人,博士,教授,1991年于吉林大学获得博士学位,主要从事有机超分子光电材料结构与性质、有机光电材料非共价制备、有机电致发光材料基础研究与应用技术开发。 E-mail: yuewang@jlu.edu.cn" ]
纸质出版日期:2023-01-05,
收稿日期:2022-05-31,
修回日期:2022-06-14,
扫 描 看 全 文
梁宝炎,庄旭鸣,宋小贤等.基于激基复合物激发态的电致发光材料与器件研究进展[J].发光学报,2023,44(01):61-76.
LIANG Baoyan,ZHUANG Xuming,SONG Xiaoxian,et al.Research Progress of Electroluminescent Materials and Devices Based on Exciplex Excited State[J].Chinese Journal of Luminescence,2023,44(01):61-76.
梁宝炎,庄旭鸣,宋小贤等.基于激基复合物激发态的电致发光材料与器件研究进展[J].发光学报,2023,44(01):61-76. DOI: 10.37188/CJL.20220220.
LIANG Baoyan,ZHUANG Xuming,SONG Xiaoxian,et al.Research Progress of Electroluminescent Materials and Devices Based on Exciplex Excited State[J].Chinese Journal of Luminescence,2023,44(01):61-76. DOI: 10.37188/CJL.20220220.
具有分子间电荷转移激发态特性的激基复合物(Exciplex)体系,由于前线分子轨道的分离特性——最高占有轨道(Highest occupied molecular orbital,HOMO)集中分布于给体分子上,最低空轨道(Lowest unoccupied molecular orbital,LUMO)集中分布于受体分子上,因此具有极小的单线态‐三线态能级差(Δ
E
st
)以及热活化延迟荧光(Thermally activated delayed fluorescence,TADF)特性。因此,激基复合物体系的理论内量子效率可以达到100%。由于构建激基复合物体系的给体分子具有空穴传输特性,受体分子具有电子传输特性,因此,激基复合物体系具有平衡的载流子迁移特性,这使得激基复合物体系在作为发光层材料以及混合主体材料制备电致发光器件时具有平衡载流子迁移、扩大激子复合区域、提高器件效率以及降低效率滚降的优势。本文将讨论和总结基于激基复合物激发态体系的电致发光材料与器件基本原理、设计思路以及近期的研究进展。
Exciplex, characterized by intermolecular charge-transfer excited state, possesses tiny energy splitting between the first singlet state and triplet state and thus thermally activated delayed fluorescence (TADF) property, which is caused by the separated distribution of frontier molecular orbitals. The highest occupied molecular orbital (HOMO) mainly locates at the donor molecule and the lowest unoccupied molecular orbital (LUMO) mainly locates at the acceptor molecule. As a result, exciplex can achieve 100% internal quantum efficiency theoretically like intramolecular charge-transfer TADF materials. Moreover, the donor molecule usually is hole-transporting material and the acceptor molecule is electron-transporting material, which contributes to balanced carrier injection. And the electroluminescent devices based on exciplex systems as emitting layer or mixed hosts exhibit balanced carrier injection, enlarged exciton recombination region, improved efficiency and suppressed efficiency roll-off. In this mini review, ultimate principle, design strategy and recent research progress of electroluminescent materials and devices based on exciplex excited state will be discussed and summarized.
激基复合物热活化延迟荧光有机电致发光材料与器件
exciplexthermally activated delayed fluorescenceelectroluminescent materials and devices
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
BALDO M A, LAMANSKY S, BURROWS P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1): 4-6. doi: 10.1063/1.124258http://dx.doi.org/10.1063/1.124258
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
TAO Y, YUAN K, CHEN T, et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics [J]. Adv. Mater., 2014, 26(47): 7931-7958. doi: 10.1002/adma.201402532http://dx.doi.org/10.1002/adma.201402532
YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials [J]. Chem. Soc. Rev., 2017, 46(3): 915-1016. doi: 10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
BYEON S Y, LEE D R, YOOK K S, et al. Recent progress of singlet-exciton-harvesting fluorescent organic light-emitting diodes by energy transfer processes [J]. Adv. Mater., 2019, 31(34): 1803714-1-15. doi: 10.1002/adma.201803714http://dx.doi.org/10.1002/adma.201803714
WANG Q, TIAN Q S, ZHANG Y L, et al. High-efficiency organic light-emitting diodes with exciplex hosts [J]. J. Mater. Chem. C, 2019, 7(37): 11329-11360. doi: 10.1039/c9tc03092ahttp://dx.doi.org/10.1039/c9tc03092a
ZHANG M, ZHENG C J, LIN H, et al. Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes [J]. Mater. Horiz., 2021, 8(2): 401-425. doi: 10.1039/d0mh01245ahttp://dx.doi.org/10.1039/d0mh01245a
GU J N, TANG Z Y, GUO H Q, et al. Intermolecular TADF: bulk and interface exciplexes [J]. J. Mater. Chem. C, 2022, 10(12): 4521-4532. doi: 10.1039/d1tc04950jhttp://dx.doi.org/10.1039/d1tc04950j
田苗苗, 范翊, 高颉, 等. 有机电致发光中的电致激基复合物 [J]. 发光学报, 2010, 31(6): 779-783.
TIAN M M, FAN Y, GAO J, et al. Electroplex in organic light-emitting diodes [J]. Chin. J. Lumin., 2010, 31(6): 779-783. (in English)
刘星元, 李文连, 彭俊彪, 等. 有机激基复合物电致发光器件 [J]. 发光学报, 1998, 19(2): 173-175. doi: 10.3321/j.issn:1000-7032.1998.02.016http://dx.doi.org/10.3321/j.issn:1000-7032.1998.02.016
LIU X Y, LI W L, PENG J B, et al. The organic exciplex-type electroluminescent devices [J]. Chin. J. Lumin., 1998, 19(2): 173-175. (in Chinese). doi: 10.3321/j.issn:1000-7032.1998.02.016http://dx.doi.org/10.3321/j.issn:1000-7032.1998.02.016
关云霞, 牛连斌, 孔春阳, 等. 基于激基复合物纯正发射的有机电致发光器件性能 [J]. 发光学报, 2011, 32(12): 1262-1265. doi: 10.3788/fgxb20113212.1262http://dx.doi.org/10.3788/fgxb20113212.1262
GUAN Y X, NIU L B, KONG C Y, et al. Organic light emitting devices based on pure exciplex electroluminescence [J]. Chin. J. Lumin., 2011, 32(12): 1262-1265. (in Chinese). doi: 10.3788/fgxb20113212.1262http://dx.doi.org/10.3788/fgxb20113212.1262
GOUSHI K, YOSHIDA K, SATO K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion [J]. Nat. Photonics, 2012, 6(4): 253-258. doi: 10.1038/nphoton.2012.31http://dx.doi.org/10.1038/nphoton.2012.31
GOUSHI K, ADACHI C. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes [J]. Appl. Phys. Lett., 2012, 101(2): 023306-1-4. doi: 10.1063/1.4737006http://dx.doi.org/10.1063/1.4737006
WANG M S, HUANG Y H, LIN K S, et al. Revealing the cooperative relationship between spin, energy, and polarization parameters toward developing high-efficiency exciplex light-emitting diodes [J]. Adv. Mater., 2019, 31(46): 1904114-1-8. doi: 10.1002/adma.201904114http://dx.doi.org/10.1002/adma.201904114
LIANG B Y, WANG J X, CHENG Z, et al. Exciplex-based electroluminescence: over 21% external quantum efficiency and approaching 100 lm/W power efficiency [J]. J. Phys. Chem. Lett., 2019, 10(11): 2811-2816. doi: 10.1021/acs.jpclett.9b01140http://dx.doi.org/10.1021/acs.jpclett.9b01140
CHAPRAN M, PANDER P, VASYLIEVA M, et al. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex [J]. ACS Appl. Mater. Interfaces, 2019, 11(14): 13460-13471. doi: 10.1021/acsami.8b18284http://dx.doi.org/10.1021/acsami.8b18284
ZHAO J W, ZHENG C J, ZHOU Y, et al. Novel small-molecule electron donor for solution-processed ternary exciplex with 24% external quantum efficiency in organic light-emitting diode [J]. Mater. Horiz., 2019, 6(7): 1425-1432. doi: 10.1039/c9mh00373hhttp://dx.doi.org/10.1039/c9mh00373h
SARMA M, WONG K T. Exciplex: an intermolecular charge-transfer approach for TADF [J]. ACS Appl. Mater. Interfaces, 2018, 10(23): 19279-19304. doi: 10.1021/acsami.7b18318http://dx.doi.org/10.1021/acsami.7b18318
ZHANG T Y, CHU B, LI W L, et al. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES⁃T of around zero [J]. ACS Appl. Mater. Interfaces, 2014, 6(15): 11907-11914. doi: 10.1021/am501164shttp://dx.doi.org/10.1021/am501164s
JANKUS V, CHIANG C J, DIAS F, et al. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or e-type triplet conversion to singlet excitons? [J]. Adv. Mater., 2013, 25(10): 1455-1459. doi: 10.1002/adma.201203615http://dx.doi.org/10.1002/adma.201203615
KOLOSOV D, ADAMOVICH V, DJUROVICH P, et al. 1,8-naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission [J]. J. Am. Chem. Soc., 2002, 124(33): 9945-9954. doi: 10.1021/ja0263588http://dx.doi.org/10.1021/ja0263588
STEWART D J, DALTON M J, SWIGER R N, et al. Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers [J]. J. Phys. Chem. A, 2013, 117(19): 3909-3917. doi: 10.1021/jp312029ehttp://dx.doi.org/10.1021/jp312029e
LIU X K, CHEN Z, ZHENG C J, et al. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes [J]. Adv. Mater., 2015, 27(14): 2378-2383. doi: 10.1002/adma.201405062http://dx.doi.org/10.1002/adma.201405062
HUNG W Y, FANG G C, CHANG Y C, et al. Highly efficient bilayer interface exciplex for yellow organic light-emitting diode [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 6826-6831. doi: 10.1021/am402032zhttp://dx.doi.org/10.1021/am402032z
CHEN D C, XIE G Z, CAI X Y, et al. Fluorescent organic planar pn heterojunction light-emitting diodes with simplified structure, extremely low driving voltage, and high efficiency [J]. Adv. Mater., 2016, 28(2): 239-244. doi: 10.1002/adma.201504290http://dx.doi.org/10.1002/adma.201504290
NAKANOTANI H, FURUKAWA T, MORIMOTO K, et al. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers [J]. Sci. Adv., 2016, 2(2): e1501470-1-7. doi: 10.1126/sciadv.1501470http://dx.doi.org/10.1126/sciadv.1501470
HUNG W Y, FANG G C, LIN S W, et al. The first tandem, all-exciplex-based WOLED [J]. Sci. Rep., 2014, 4: 5161-1-6. doi: 10.1038/srep05161http://dx.doi.org/10.1038/srep05161
LIU X K, CHEN Z, QING J, et al. Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex [J]. Adv. Mater., 2015, 27(44): 7079-7085. doi: 10.1002/adma.201502897http://dx.doi.org/10.1002/adma.201502897
CHEN Z, LIU X K, ZHENG C J, et al. High performance exciplex-based fluorescence-phosphorescence white organic light-emitting device with highly simplified structure [J]. Chem. Mater., 2015, 27(15): 5206-5211. doi: 10.1021/acs.chemmater.5b01188http://dx.doi.org/10.1021/acs.chemmater.5b01188
ZHANG C, LU Y, LIU Z Y, et al. A π-D and π-A exciplex-forming host for high-efficiency and long-lifetime single-emissive-layer fluorescent white organic light-emitting diodes [J]. Adv. Mater., 2020, 32(42): 2004040-1-10. doi: 10.1002/adma.202004040http://dx.doi.org/10.1002/adma.202004040
LIN T C, SARMA M, CHEN Y T, et al. Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes [J]. Nat. Commun., 2018, 9(1): 3111-1-8. doi: 10.1038/s41467-018-05527-4http://dx.doi.org/10.1038/s41467-018-05527-4
LIANG B Y, WANG J X, CUI Y Y, et al. Benzimidazole–triazine based exciplex films as emitters and hosts to construct highly efficient OLEDs with a small efficiency roll-off [J]. J. Mater. Chem. C, 2020, 8(8): 2700-2708. doi: 10.1039/c9tc06212bhttp://dx.doi.org/10.1039/c9tc06212b
HUNG W Y, WANG T C, CHIANG P Y, et al. Remote steric effect as a facile strategy for improving the efficiency of exciplex-based OLEDs [J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7355-7361. doi: 10.1021/acsami.6b16083http://dx.doi.org/10.1021/acsami.6b16083
ZHANG M, ZHENG C J, WANG K, et al. Hydrogen-bond-assisted exciplex emitters realizing improved efficiencies and stabilities in organic light emitting diodes [J]. Adv. Funct. Mater., 2021, 31(13): 2010100-1-10. doi: 10.1002/adfm.202010100http://dx.doi.org/10.1002/adfm.202010100
PARK Y S, KIM K H, KIM J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes [J]. Appl. Phys. Lett., 2013, 102(15): 153306-1-5. doi: 10.1063/1.4802716http://dx.doi.org/10.1063/1.4802716
KIM K H, YOO S J, KIM J J. Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency [J]. Chem. Mater., 2016, 28(6): 1936-1941. doi: 10.1021/acs.chemmater.6b00478http://dx.doi.org/10.1021/acs.chemmater.6b00478
LIU W, CHEN J X, ZHENG C J, et al. Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials [J]. Adv. Funct. Mater., 2016, 26(12): 2002-2008. doi: 10.1002/adfm.201505014http://dx.doi.org/10.1002/adfm.201505014
ZHANG M, LIU W, ZHENG C J, et al. Tricomponent exciplex emitter realizing over 20% external quantum efficiency in organic light-emitting diode with multiple reverse intersystem crossing channels [J]. Adv. Sci., 2019, 6(14): 1801938-1-9. doi: 10.1002/advs.201801938http://dx.doi.org/10.1002/advs.201801938
JEON S K, JANG H J, LEE J Y. Ternary exciplexes for high efficiency organic light-emitting diodes by self-energy transfer [J]. Adv. Opt. Mater., 2019, 7(5): 1801462-1-6. doi: 10.1002/adom.201801462http://dx.doi.org/10.1002/adom.201801462
NGUYEN T B, NAKANOTANI H, HATAKEYAMA T, et al. The role of reverse intersystem crossing using a TADF-type acceptor molecule on the device stability of exciplex-based organic light-emitting diodes [J]. Adv. Mater., 2020, 32(9): 1906614-1-7. doi: 10.1002/adma.201906614http://dx.doi.org/10.1002/adma.201906614
HUNG W Y, CHIANG P Y, LIN S W, et al. Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor [J]. ACS Appl. Mater. Interfaces, 2016, 8(7): 4811-4818. doi: 10.1021/acsami.5b11895http://dx.doi.org/10.1021/acsami.5b11895
MAMADA M, TIAN G J, NAKANOTANI H, et al. The importance of excited-state energy alignment for efficient exciplex systems based on a study of phenylpyridinato boron derivatives [J]. Angew. Chem. Int. Ed. Engl., 2018, 57(38): 12380-12384. doi: 10.1002/anie.201804218http://dx.doi.org/10.1002/anie.201804218
LI B B, GAN L, CAI X Y, et al. An effective strategy toward high-efficiency fluorescent OLEDs by radiative coupling of spatially separated electron-hole pairs [J]. Adv. Mater. Interfaces, 2018, 5(10): 1800025. doi: 10.1002/admi.201800025http://dx.doi.org/10.1002/admi.201800025
DATA P, PANDER P, OKAZAKI M, et al. Dibenzo[a,j]phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters [J]. Angew. Chem. Int. Ed. Engl., 2016, 55(19): 5739-5744. doi: 10.1002/anie.201600113http://dx.doi.org/10.1002/anie.201600113
WU T L, LIAO S Y, HUANG P Y, et al. Exciplex organic light-emitting diodes with nearly 20% external quantum efficiency: effect of intermolecular steric hindrance between the donor and acceptor pair [J]. ACS Appl. Mater. Interfaces, 2019, 11(21): 19294-19300. doi: 10.1021/acsami.9b04365http://dx.doi.org/10.1021/acsami.9b04365
HU Y, YU Y J, YUAN Y, et al. Exciplex-based organic light-emitting diodes with near-infrared emission [J]. Adv. Opt. Mater., 2020, 8(7): 1901917-1-6. doi: 10.1002/adom.201901917http://dx.doi.org/10.1002/adom.201901917
QIN Y Y, TAO P, GAO L, et al. Designing highly efficient phosphorescent neutral tetrahedral manganese(Ⅱ) complexes for organic light-emitting diodes [J]. Adv. Opt. Mater., 2019, 7(2): 1801160-1-7. doi: 10.1002/adom.201801160http://dx.doi.org/10.1002/adom.201801160
DONG B Z, LIU Z M, YAN J K, et al. Red exciplex and its application in high CRI all-exciplex fluorescent white organic light emitting diodes [J]. Opt. Mater., 2022, 125: 112101-1-8. doi: 10.1016/j.optmat.2022.112101http://dx.doi.org/10.1016/j.optmat.2022.112101
WANG X Q, HU Y, YU Y J, et al. Over 800 nm emission via harvesting of triplet excitons in exciplex organic light-emitting diodes [J]. J. Phys. Chem. Lett., 2021, 12(26): 6034-6040. doi: 10.1021/acs.jpclett.1c01609http://dx.doi.org/10.1021/acs.jpclett.1c01609
WU R X, LIU W Q, WANG Z, et al. Highly efficient solution-processed white organic light-emitting diodes based on a co-host system by controlling energy transfer among different emitters [J]. J. Mater. Chem. C, 2022, 10(14): 5648-5656. doi: 10.1039/d2tc00188hhttp://dx.doi.org/10.1039/d2tc00188h
WEN Y, WANG Y K, ZHOU J G, et al. Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile [J]. J. Mater. Chem. C, 2022, 10(14): 5666-5671. doi: 10.1039/d1tc05978ehttp://dx.doi.org/10.1039/d1tc05978e
WANG G L, YIN M N, MIAO Y Q, et al. Combining intrinsic (blue) and exciplex (green and orange-red) emissions of the same material (OCT) in white organic light-emitting diodes to realize high color quality with a CRI of 97 [J]. J. Mater. Chem. C, 2022, 10(17): 6654-6664. doi: 10.1039/d2tc00711hhttp://dx.doi.org/10.1039/d2tc00711h
CHIU C H, AMIN N RAL, XIE J X, et al. A phosphorescent OLED with an efficiency roll-off lower than 1% at 10 000 cd m-2 achieved by reducing the carrier mobility of the donors in an exciplex co-host system [J]. J. Mater. Chem. C, 2022, 10(12): 4955-4964. doi: 10.1039/d1tc04473ghttp://dx.doi.org/10.1039/d1tc04473g
KIM Y S, LIM J, LEE J Y, et al. Benzonitirile modified N type host for exciplex host to enhance efficiency and lifetime in blue phosphorescent organic light-emitting diodes [J]. Chem. Eng. J., 2022, 429: 132584. doi: 10.1016/j.cej.2021.132584http://dx.doi.org/10.1016/j.cej.2021.132584
SAGHAEI J, RUSSELL S M, JIN H, et al. Rivers of light—ternary exciplex blends for high efficiency solution-processed red phosphorescent organic light emitting diodes [J]. Adv. Funct. Mater., 2022, 32(8): 2108128-1-11. doi: 10.1002/adfm.202108128http://dx.doi.org/10.1002/adfm.202108128
REN Q J, ZHAO Y, LIU C, et al. Efficient triplet harvest for orange-red and white OLEDs based exciplex host with different donor/acceptor ratios [J]. Opt. Mater., 2021, 113: 110907-1-5. doi: 10.1016/j.optmat.2021.110907http://dx.doi.org/10.1016/j.optmat.2021.110907
DUBEY D K, THAKUR D, YADAV R A K, et al. High-throughput virtual screening of host materials and rational device engineering for highly efficient solution-processed organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2021, 13(22): 26204-26217. doi: 10.1021/acsami.1c04015http://dx.doi.org/10.1021/acsami.1c04015
LIAO X Q, AN K G, LI Y, et al. Blocking energy-loss pathways for phosphorescent organic light emitting devices with novel exciplex-forming host [J]. Dyes Pigm., 2020, 182: 108694-1-8. doi: 10.1016/j.dyepig.2020.108694http://dx.doi.org/10.1016/j.dyepig.2020.108694
LIANG B Y, YU Z S, ZHUANG X M, et al. Achieving high-performance pure-red electrophosphorescent iridium(III) complexes based on optimizing ancillary ligands [J]. Chem. Eur. J., 2020, 26(19): 4410-4418. doi: 10.1002/chem.201905690http://dx.doi.org/10.1002/chem.201905690
LI M G, DAI Y Z, ZHANG Y, et al. Highly efficient ultrathin fluorescent OLEDs through synergistic sensitization effects of phosphor and exciplex [J]. ACS Appl. Electron. Mater., 2020, 2(11): 3704-3710. doi: 10.1021/acsaelm.0c00734http://dx.doi.org/10.1021/acsaelm.0c00734
LIU X K, CHEN Z, ZHENG C J, et al. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex [J]. Adv. Mater., 2015, 27(12): 2025-2030. doi: 10.1002/adma.201500013http://dx.doi.org/10.1002/adma.201500013
ZHAO B, ZHANG T Y, CHU B, et al. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host [J]. Sci. Rep., 2015, 5(1): 10697-1-8. doi: 10.1038/srep10697http://dx.doi.org/10.1038/srep10697
LI H J, XIE N, WANG J X, et al. Highly efficient full-fluorescence organic light-emitting diodes with exciplex cohosts [J]. Org. Electron., 2021, 88: 106004-1-6. doi: 10.1016/j.orgel.2020.106004http://dx.doi.org/10.1016/j.orgel.2020.106004
HUNG Y T, CHEN Z Y, HUNG W Y, et al. Exciplex cohosts employing nonconjugated linked dicarbazole donors for highly efficient thermally activated delayed fluorescence-based organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018, 10(40): 34435-34442. doi: 10.1021/acsami.8b14070http://dx.doi.org/10.1021/acsami.8b14070
ZHAO B, MIAO Y Q, WANG Z Q, et al. Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex [J]. Org. Electron., 2016, 37: 1-5. doi: 10.1016/j.orgel.2016.06.016http://dx.doi.org/10.1016/j.orgel.2016.06.016
KIM H G, KIM K H, MOON C K, et al. Harnessing triplet excited states by fluorescent dopant utilizing codoped phosphorescent dopant in exciplex host for efficient fluorescent organic light emitting diodes [J]. Adv. Opt. Mater., 2017, 5(3): 1600749. doi: 10.1002/adom.201600749http://dx.doi.org/10.1002/adom.201600749
KIM B S, LEE J Y Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device [J]. Adv. Funct. Mater., 2014, 24(25): 3970-3977. doi: 10.1002/adfm.201303730http://dx.doi.org/10.1002/adfm.201303730
SUN J W, LEE J H, MOON C K, et al. A fluorescent organic light-emitting diode with 30% external quantum efficiency [J]. Adv. Mater., 2014, 26(32): 5684-5688. doi: 10.1002/adma.201401407http://dx.doi.org/10.1002/adma.201401407
MOON C K, SUZUKI K, SHIZU K, et al. Combined inter- and intramolecular charge-transfer processes for highly efficient fluorescent organic light-emitting diodes with reduced triplet exciton quenching [J]. Adv. Mater., 2017, 29(17): 1606448-1-5. doi: 10.1002/adma.201606448http://dx.doi.org/10.1002/adma.201606448
XU Y C, CHENG Z, LI Z Q, et al. Molecular-structure and device-configuration optimizations toward highly efficient green electroluminescence with narrowband emission and high color purity [J]. Adv. Opt. Mater., 2020, 8(9): 1902142-1-7. doi: 10.1002/adom.201902142http://dx.doi.org/10.1002/adom.201902142
ZHANG T M, YAO J W, ZHANG S, et al. Highly efficient and low efficiency roll-off organic light-emitting diodes with double-exciplex forming co-hosts [J]. J. Mater. Chem. C, 2021, 9(18): 6062-6067. doi: 10.1039/d0tc05842dhttp://dx.doi.org/10.1039/d0tc05842d
HAN C M, DU R M, XU H, et al. Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer [J]. Nat. Commun., 2021, 12(1): 3640-1-8. doi: 10.1038/s41467-021-23941-zhttp://dx.doi.org/10.1038/s41467-021-23941-z
CHEN L, CHANG Y F, SHI S, et al. Solution-processed white OLEDs with power efficiency over 90 lm·W-1 by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter [J]. Mater. Horiz., 2022, 9(4): 1299-1308. doi: 10.1039/d1mh02060ahttp://dx.doi.org/10.1039/d1mh02060a
0
浏览量
745
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构