浏览全部资源
扫码关注微信
1.云南大学 物理与天文学院,云南省高校光电器件工程重点实验室,云南 昆明 650500
2.中国科学院 上海硅酸盐研究所,上海 201899
3.上海大学 材料科学与工程学院,上海 200444
4.杭州医学院 医学影像学院,浙江 杭州 310053
5.中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
[ "杨洁(1997-),女,山西临汾人,博士研究生,2021年于云南师范大学获得硕士学位,主要从事稀土离子光谱与超快激光的研究。E-mail: Yangjie0816@mail.ynu.edu.cn" ]
[ "郑丽和(1983-),女,浙江乐清人,博士,教授,2009年于中国科学院上海硅酸盐研究所获得博士学位,主要从事激光材料与器件及其应用、先进室温复合装备的研究。Email: zhenglihe@ynu.edu.cn" ]
纸质出版日期:2022-03,
收稿日期:2021-11-14,
修回日期:2021-12-04,
扫 描 看 全 文
杨洁, 赵建斌, 刘乂尹, 等. 镱钠共掺氟化钙锶混晶近红外光谱与激光参数[J]. 发光学报, 2022,43(3):341-349.
Jie YANG, Jian-bin ZHAO, Yi-yin LIU, et al. Near-infrared Spectra and Laser Parameters of Yb3+ and Na+ Codoped CaF2-SrF2 Crystal[J]. Chinese Journal of Luminescence, 2022,43(3):341-349.
杨洁, 赵建斌, 刘乂尹, 等. 镱钠共掺氟化钙锶混晶近红外光谱与激光参数[J]. 发光学报, 2022,43(3):341-349. DOI: 10.37188/CJL.20210358.
Jie YANG, Jian-bin ZHAO, Yi-yin LIU, et al. Near-infrared Spectra and Laser Parameters of Yb3+ and Na+ Codoped CaF2-SrF2 Crystal[J]. Chinese Journal of Luminescence, 2022,43(3):341-349. DOI: 10.37188/CJL.20210358.
研究了15%Yb
20%Na∶CaF
2
-SrF
2
混晶(Yb
Na∶CaF
2
-SrF
2
CaF
2
∶SrF
2
=1∶1)的近红外光谱和激光参数特性。研究显示,Yb
Na∶CaF
2
-SrF
2
混晶在974 nm处吸收带宽为22 nm,吸收系数为13.09 cm
-1
,吸收截面为0.31×10
-20
cm
2
。Yb
3+
离子在CaF
2
-SrF
2
基质中主发射峰中心波长位于1 010 nm,肩峰中心波长位于1 036 nm,发射带宽为56 nm,在
2
F
5/2
→
2
F
7/2
能级之间跃迁对应的荧光寿命为228 μs。采用激发波长980 nm时,1 010 nm处发射截面为6.52×10
-20
cm
2
、1 036 nm处发射截面为4.11×10
-20
cm
2
,分别是915 nm激发时的1.49倍与1.68倍;实现激光输出波长1 036 nm处达到布居反转时所需要激发的激活粒子数的最小分数
β
min
为0.34%,在零声子线974 nm处的饱和泵浦功率密度
I
sat
为290.58 kW·cm
-2
。上述结果表明,Yb
Na∶CaF
2
-SrF
2
混晶在近红外波段高能量激光系统中具有潜在应用前景。
15%Yb
20%Na∶CaF
2
-SrF
2
(Yb
Na∶CaF
2
-SrF
2
CaF
2
∶SrF
2
=1∶1) single crystal with the ratio of 1∶1 for CaF
2
and SrF
2
is characterized by near-infrared spectra followed by the evaluation of laser parameters. The absorption bandwidth centered at 974 nm is 22 nm
together with absorption coefficient of 13.09 cm
-1
and absorption cross section of 0.31×10
-20
cm
2
. The fluorescence lifetime corresponding to energy transfer channel of
2
F
5/2
→
2
F
7/2
is measured as 228 μs. The main emission band of Yb
3+
ions in Yb
Na∶CaF
2
-SrF
2
host is centered at 1 010 nm with a shoulder band peaked at 1 036 nm. The emission bandwidth under the excitation wavelength of 915 nm is fitted to be 56 nm by using the Lorentz method. The emission cross section reaches 6.52×10
-20
cm
2
at 1 010 nm and 4.11×10
-20
cm
2
at 1 036 nm under an excitation wavelength of 980 nm. On the other hand
the emission cross sections get 1.49 times and 1.68 times reduction at 1 010 nm and 1 036 nm under the excitation wavelength of 915 nm when compared with those under the excitation wavelength of 980 nm. Furthermore
the inversion population
β
min
of 0.34% and the saturation pump power of 290.58 kW·cm
-2
are obtained under the excitation wavelength of 980 nm. It indicates that high dopant level of Yb
3+
in Yb
Na∶CaF
2
-SrF
2
single crystal could lead to the potential applications in near-infrared high energy laser system.
氟化物激光晶体镱离子吸收光谱荧光光谱饱和泵浦功率密度
fluoride laser crystalYb3+ ionsabsorption spectrafluorescence spectrasaturation pump power density
ISINGER M, SQUIBB R J, BUSTO D, et al. Photoionization in the time and frequency domain [J]. Science, 2017, 358(6365):893-896.
KERSE C, KALAYCIOČLU H, ELAHI P, et al. Ablation-cooled material removal with ultrafast bursts of pulses [J]. Nature, 2016, 537(7618):84-88.
ZHENG L H, KAUSAS A, TAIRA T. Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser [J]. Opt. Mater. Express, 2017, 7(9):3214-3221.
ZHAO Y Q, WANG Q G, MENG L H, et al. Anisotropy of the thermal and laser output properties in Yb,Nd∶Sc2SiO5 crystal [J]. Chin. Opt. Lett., 2021, 19(4):041405-1-5.
ZHENG L, XU J, ZHAO G, et al. Bulk crystal growth and efficient diode-pumped laser performance of Yb3+∶Sc2SiO5 [J]. Appl. Phys. B, 2008, 91(3):443-445.
ZHENG L H, KAUSAS A, TAIRA T. >30 MW peak power from distributed face cooling tiny integrated laser [J]. Opt. Express, 2019, 27(21):30217-30224.
姜豪, 徐浏, 陈小明, 等. 端抽运准连续Yb∶SSO激光实验研究 [J]. 中国激光, 2016, 43(11):1101007-1-5.
JIANG H, XU L, CHEN X M, et al. Experimental research on end-pumped quasi-continuous wave Yb∶SSO laser [J]. Chin. J. Lasers, 2016, 43(11):1101007-1-5. (in Chinese)
ZOU Z T, ZHENG L H, WANG J T, et al. Crystal growth and photoluminescence spectra properties of (YbxNdySc1-x-y)2SiO5 laser crystal [J]. Laser Phys. Lett., 2018, 15(8):085703-1-6.
ROUSSE A, RISCHEL C, FOURMAUX S, et al. Non-thermal melting in semiconductors measured at femtosecond resolution [J]. Nature, 2001, 410(6824):65-68.
CAIRD J, AGRAWAL V, BAYRAMIAN A, et al. Nd∶glass laser design for Laser ICF Fission Energy (LIFE) [J]. Fusion Sci. Technol., 2009, 56(2):607-617.
SCHAFFERS K I, TASSANO J B, BAYRAMIAN A B, et al. Growth of Yb∶S-FAP [Yb3+∶Sr5(PO4)3F] crystals for the mercury laser [J]. J. Cryst. Growth, 2003, 253(1-4):297-306.
YOSHIOKA H, NAKAMURA S, OGAWA T, et al. Diode-pumped mode-locked Yb∶YAG ceramic laser [J]. Opt. Express,2009, 17(11):8919-8925.
SIEBOLD M, HORNUNG M, HEIN J, et al. High-peak power diode-pumped Yb∶CaF2 laser [C]. CLEO/Europe-EQEC 2009-European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference,Munich, 2009:1.
TIAN Y, LIU J S, BAI Y F, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation [J]. Nat. Photonics, 2017, 11(2):242-246.
KIRIYAMA H, MORI M, PIROZHKOV A S, et al. High-contrast,high-intensity petawatt-class laser and applications [J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1):1601118-1-17.
DANSON C, HILLIER D, HOPPS N, et al. Petawatt class lasers worldwide [J]. High Power Laser Sci. Eng., 2015, 3:E3-1-14.
BANERJEE S, ERTEL K, MASON P D, et al. DiPOLE:a 10 J,10 Hz cryogenic gas cooled multi-slab nanosecond Yb∶YAG laser [J]. Opt. Express, 2015, 23(15):19542-19551.
张钦辉, 甄西合, 史达威, 等. φ370 mm高质量CaF2晶体的生长 [J]. 人工晶体学报, 2016, 45(12):2935-2936.
ZHANG Q H, ZHEN X H, SHI D W, et al. Growth of high-quality CaF2 crystal with φ370 mm [J]. J. Synth. Cryst., 2016, 45(12):2935-2936. (in Chinese)
徐悟生, 彭明林, 杨春晖. 8英寸氟化钙单晶生长 [J]. 人工晶体学报, 2021, 50(3):407-409.
XU W S, PENG M L, YANG C H. Growth of 8-inch CaF2 single crystal [J]. J. Synth. Cryst., 2021, 50(3):407-409. (in Chinese)
ZHENG L H, ZHAO J B, WANG Y X, et al. Mid-IR optical property of Dy∶CaF2-SrF2 crystal fabricated by multicrucible temperature gradient technology [J]. Crystals, 2021, 11(8):907-1-9.
阮芳芳, 杨龙, 胡广, 等. 多坩埚温度梯度法生长Dy3+∶LaF3晶体及发光特性 [J]. 发光学报, 2021, 42(2):158-164.
RUAN F F, YANG L, HU G, et al. Luminescence properties of Dy3+ doped lanthanum fluoride crystal by multi-crucible temperature gradient technology [J]. Chin. J. Lumin., 2021, 42(2):158-164. (in Chinese)
LIU J, FENG C, SU L B, et al. Characteristics of a diode-pumped Yb∶CaF2-SrF2 mode-locked laser using a carbon nanotube absorber [J]. Laser Phys. Lett.,2013, 10(10):105806-1-4.
吴叶青, 苏良碧, 徐军, 等. Yb∶CaF2-SrF2激光晶体光谱性能以及热学性能的研究 [J]. 物理学报, 2012, 61(17):177801-1-6.
WU Y Q, SU L B, XU J, et al. Spectroscopic and thermal properties of Yb doped CaF2-SrF2 laser crystal [J]. Acta Phys. Sinica, 2012, 61(17):177801-1-6. (in Chinese)
JIANG B B, ZHENG L H, JIANG D P, et al. Growth and optical properties of ytterbium and rare earth ions codoped CaF2-SrF2 eutectic solid-solution (RE=Y3+,Gd3+,La3+) [J]. J. Rare Earths, 2021, 39(4):390-397.
MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+ (RE=Y,La~Lu) in MF2 (M=Ca,Sr,Ba) fluorites [J]. Mater. Res. Bull., 2020, 125:110788-1-12.
葛文琦, 柴路, 胡明列, 等. 镱钠共掺氟化钙锁模激光器产生190 fs光脉冲 [J]. 物理学报, 2012, 61(1):014213-1-5.
GE W Q, CHAI L, HU M L, et al. Generation of 190 fs optical pulses from a mode-locked Yb,Na∶CaF2 laser [J]. Acta Phys. Sinica, 2012, 61(1):014213-1-5. (in Chinese)
GE W Q, CHAI L, YAN J, et al. High power continuous-wave operation and dynamics of soliton mode-locked Yb,Na∶CaF2 lasers at room temperature [J]. IEEE J. Quantum Electron., 2011, 47(7):977-983.
葛文琦, 柴路, 闫杰, 等. 半导体激光器抽运的连续锁模镱钠共掺氟化钙激光器 [J]. 中国激光, 2010, 37(11):2803-2806.
GE W Q, CHAI L, YAN J, et al. Laser diode-pumped continuous-wave mode-locked Yb,Na∶CaF2 laser [J]. Chin. J. Lasers, 2010, 37(11):2803-2806. (in Chinese)
柴路, 葛文琦, 闫杰, 等. 高功率激光二极管抽运的镱钠共掺氟化钙连续激光器 [J]. 中国激光, 2009, 36(7):1700-1703.
CHAI L, GE W Q, YAN J, et al. High-power laser diode-pumped Yb,Na∶CaF2 continuous-wave laser [J]. Chin. J. Lasers, 2009, 36(7):1700-1703. (in Chinese)
GECHEV S M, ILIEV H, GANEV V, et al. Yb,Na∶CaSrF2—a promising laser crystal medium in UV-Vis-near-IR domain [C]. 2015 17th International Conference on Transparent Optical Networks (ICTON),Budapest, Hungary, 2015:1-4.
KASAMATSU T, SEKITA H, KUWANO Y. Temperature dependence and optimization of 970-nm diode-pumped Yb∶YAG and Yb∶LuAG lasers [J]. Appl. Opt., 1999, 38(24):5149-5153.
QIU H W, YANG P Z, DONG J, et al. The influence of Yb concentration on laser crystal Yb∶YAG [J]. Mater. Lett., 2002, 55(1-2):1-7.
SAIKAWA J, SATO Y, TAIRA T, et al. Absorption,emission spectrum properties,and efficient laser performances of Yb∶Y3ScAl4O12 ceramics [J]. Appl. Phys. Lett., 2004, 85(11):1898-1900.
WANG S X, SUN X L, LIU H L, et al. Femtosecond laser direct writing of Nd∶YLF cladding waveguides for efficient 1 047-nm laser emission [J]. Opt. Mater. Express,2021, 11(9):2915-2923.
JIANG C, GAN F X, ZHANG J Z, et al. Yb∶tellurite laser glass with high emission cross-section [J]. Mater. Lett., 1999, 41(4):209-214.
JIANG C, LIU H, ZENG Q J, et al. Yb∶phosphate laser glass with high emission cross-section [J]. J. Phys. Chem. Solids, 2000, 61(8):1217-1223.
ZHENG L H, ZHAO G J, YAN C F, et al. Growth and spectroscopic characteristics of Yb∶LPS single crystal [J]. J. Cryst. Growth, 2007, 304(2):441-447.
THIBAULT F, PELENC D, DRUON F, et al. Efficient diode-pumped Yb3+∶Y2SiO5 and Yb3+∶Lu2SiO5 high-power femtosecond laser operation [J]. Opt. Lett., 2006, 31(10):1555-1557.
GAUME R, HAUMESSER P H, VIANA B, et al. Optical and laser properties of Yb∶Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials [J]. Opt. Mater., 2002, 19(1):81-88.
0
浏览量
129
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构