文章编号:1000-7032(2022)03-0341-09

镱钠共掺氟化钙锶混晶近红外光谱与激光参数

杨 洁1,赵建斌1,刘乂尹1,杨 龙1,王阳啸2,

唐李国¹,冯 鹤³,阮芳芳⁴,郑建刚⁵,郑丽和^{1*},苏良碧²

(1. 云南大学 物理与天文学院, 云南省高校光电器件工程重点实验室, 云南 昆明 650500;

2. 中国科学院 上海硅酸盐研究所,上海 201899; 3. 上海大学 材料科学与工程学院,上海 200444;

4. 杭州医学院 医学影像学院,浙江 杭州 310053; 5. 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900)

摘要:研究了 15% Yb, 20% Na: CaF₂-SrF₂ 混晶(Yb,Na: CaF₂-SrF₂,CaF₂: SrF₂ = 1:1)的近红外光谱和激光参数特性。研究显示,Yb,Na: CaF₂-SrF₂ 混晶在 974 nm 处吸收带宽为 22 nm,吸收系数为 13.09 cm⁻¹,吸收截面为 0.31 × 10⁻²⁰ cm²。Yb³⁺ 离子在 CaF₂-SrF₂ 基质中主发射峰中心波长位于 1 010 nm,肩峰中心波长位于 1 036 nm,发射带宽为 56 nm,在²F_{5/2}→²F_{7/2}能级之间跃迁对应的荧光寿命为 228 µs。采用激发波长 980 nm 时,1 010 nm 处发射截面为 6.52 × 10⁻²⁰ cm²、1 036 nm 处发射截面为 4.11 × 10⁻²⁰ cm²,分别是 915 nm 激发时的1.49倍与 1.68 倍;实现激光输出波长 1 036 nm 处达到布居反转时所需要激发的激活粒子数的最小分数 β_{min} 为 0.34%,在零声子线 974 nm 处的饱和泵浦功率密度 I_{sat} 为 290.58 kW·cm⁻²。上述结果表明,Yb,Na: CaF₂-SrF₂ 混晶在近红外波段高能量激光系统中具有潜在应用前景。

关 键 词:氟化物激光晶体;镱离子;吸收光谱;荧光光谱;饱和泵浦功率密度 中图分类号:0482.31 **文献标识码:** A **DOI**: 10.37188/CJL.20210358

Near-infrared Spectra and Laser Parameters of Yb³⁺ and Na⁺ Codoped CaF₂-SrF₂ Crystal

YANG Jie¹, ZHAO Jian-bin¹, LIU Yi-yin¹, YANG Long¹, WANG Yang-xiao², TANG Li-guo¹,

FENG He³, RUAN Fang-fang⁴, ZHENG Jian-gang⁵, ZHENG Li-he^{1*}, SU Liang-bi²

 $(1. \ {\it Key \ Laboratory \ of \ Yunnan \ Provincial \ Higher \ Education \ Institution \ for \ Optoelectronics \ Devices \ Engineering}\,,$

School of Physics and Astronomy, Yunnan University, Kunming 650500, China;

2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;

3. School of Material Science and Engineering, Shanghai University, Shanghai 200444, China;

4. Department of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China;

5. Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China)

* Corresponding Author, E-mail: zhenglihe@ ynu. edu. cn

Abstract: 15% Yb,20% Na: CaF_2 -SrF₂ (Yb, Na: CaF_2 -SrF₂, CaF_2 : SrF₂ = 1:1) single crystal with the ratio of 1:1 for CaF_2 and SrF₂ is characterized by near-infrared spectra followed by the evaluation

收稿日期: 2021-11-14;修订日期: 2021-12-04

基金项目:国家自然科学基金(U1830104,62165017);上海市科委项目(20501110300);中国科学院创新交叉团队(JCTD-2019-12);中 科院仪器研制项目和先导A(ZDKYYQ20210002,XDA25020312);云南省科技计划项目基础研究专项(202101AT070162);中 国科学院透明光功能无机材料重点实验室开放课题(KLT0IM202001);云南大学生创新创业训练项目(202010673075); 云南大学研究生科研创新基金项目资助

Supported by National Natural Science Foundation of China (U1830104,62165017); Science and Technology Commissions of Shanghai Municipality(20501110300); CAS Interdisciplinary Innovation Team(JCTD-2019-12); Instrument Developing and The Strategic Priority Programs of CAS(ZDKYYQ20210002,XDA25020312); Yunnan Province Basic Research Project(202101AT070162); The Opening Project of State Key Laboratory of Transparent Opto-functional Inorganic Materials CAS(KLTOIM202001); Yunnan College Students' Innovative Entrepreneurial Training Project(202010673075); Graduate Research Innovation Fund Project of Yunnan University

of laser parameters. The absorption bandwidth centered at 974 nm is 22 nm, together with absorption coefficient of 13.09 cm⁻¹ and absorption cross section of 0.31 × 10⁻²⁰ cm². The fluorescence lifetime corresponding to energy transfer channel of ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ is measured as 228 µs. The main emission band of Yb³⁺ ions in Yb, Na: CaF₂-SrF₂ host is centered at 1 010 nm with a shoulder band peaked at 1 036 nm. The emission bandwidth under the excitation wavelength of 915 nm is fitted to be 56 nm by using the Lorentz method. The emission cross section reaches 6.52 × 10⁻²⁰ cm² at 1 010 nm and 4.11 × 10⁻²⁰ cm² at 1 036 nm under an excitation wavelength of 980 nm. On the other hand, the emission cross sections get 1.49 times and 1.68 times reduction at 1 010 nm and 1 036 nm under the excitation wavelength of 980 nm. Furthermore, the inversion population β_{min} of 0.34% and the saturation pump power of 290.58 kW · cm⁻² are obtained under the excitation wavelength of 980 nm. It indicates that high dopant level of Yb³⁺ in Yb, Na: CaF₂-SrF₂ single crystal could lead to the potential applications in near-infrared high energy laser system.

Key words: fluoride laser crystal; Yb3+ ions; absorption spectra; fluorescence spectra; saturation pump power density

1引言

激光技术在超快点火、全息、微加工、生物医 疗、超快光谱学等领域具有广泛应用,并推动了物 理、化学、生物、材料学等学科研究向更深层次发 展^[16]。研究新一代激光二极管(LD)直接泵浦 且适用于高能量激光系统的高性能激光材料具有 重要意义^[78]。

自 1991 年实现室温 LD 泵浦 Yb: YAG 激光 运转以来,掺镱激光晶体受到了极大关注^[9]。 Yb³⁺离子具有能级结构简单、量子亏损小等特 点,是超强超短与高能激光材料的首选激活离子 之一^[9-13]。国内外重大激光装置如中国 SULF、 日本 J-KAREN、英国 DIPOLE、德国 POLARIS 与法 国 LUCIA 等,分别采用掺镱氟磷酸锶(Yb:S-FAP) 晶体、Yb: CaF2 晶体、Yb: YAG 晶体/陶瓷等 激光增益介质^[14-17]。其中,Yb:CaF,晶体综合性 能较为突出,可大尺寸制备、热导率(9.7 W·m⁻¹· K⁻¹)较高、非线性折射率 n₂ 较小(0.43×10⁻¹³ esu,约为磷酸盐玻璃的1/2)等^[18-19]。德国耶拿 大学和亥姆霍兹研究所开发的基于 Yb: CaF, 晶体 全LD 泵浦高功率、高能量激光装置(POLARIS) 实现了太瓦级重频激光输出,激光能量54 J,峰值 功率 170 TW。然而, 低浓度 5% Yb: CaF2 晶体也 存在不足,诸如吸收和发射截面偏小、增益系数较 低,发射光谱存在多峰结构,不利于实现超短脉冲 输出等。因此,需要设计和调控 Yb3+局域格位,

在保持平滑、宽发射光谱的基础上,提高其吸收截 面和发射截面。

针对上述问题,碱土金属氟化物诸如 CaF₂-SrF₂等混晶逐渐成为研究热点。相较于 CaF₂ 晶体,CaF₂-SrF₂混晶具有更低的声子能量^[20]。研究人员针对 CaF₂-SrF₂混晶的热学、光学和缺陷等特性开展研究,并在不同稀土离子掺杂 CaF₂-SrF₂混晶中实现了激光输出^[20-25]。掺 Yb³⁺氟化物晶体中容易形成[Yb³⁺-Yb³⁺] 团簇,影响其发光效率。为了打破氟化物基质中的团簇现象并获得高激光增益,研究人员采用稀土离子 Yb³⁺与碱金属离子 Na⁺ 共掺对氟化物基质进行局域结构调节与价态补偿,开展了低浓度 Yb³⁺掺杂激光材料诸如 1.8% YbF₃,2.5% NaF: Ca_{0.67} Sr_{0.33} F₂ 混晶、5% Yb,Na: CaF₂晶体等研制工作,并在低浓度掺杂 5% Yb,Na: CaF₂晶体中开展连续锁模激光、孤子锁模激光和超快飞秒激光等研究^[26-30]。

基于高能量激光系统对高性能激光材料的实际需求,本文综合考虑碱土金属氟化物晶体可大尺寸制备、发射谱带宽及碱金属离子 Na⁺局域结构调节等特性,首次针对温梯法技术制备的高浓度掺杂 15% Yb, 20% Na: CaF₂-SrF₂ 混晶(Yb,Na: CaF₂-SrF₂,CaF₂: SrF₂ = 1:1)开展光谱与激光参数研究。进行了室温吸收光谱、荧光寿命及发射光谱等测定,计算其在选定激发波长(λ_{ex} = 915, 980 nm)和特定激光波长(λ = 1 010,1 036 nm)处的激光参数,包括饱和泵浦功率密度(I_{sat})、激光

输出波长处达到布居反转时所需要激发的激活粒 子数的最小分数(简称最小粒子数反转比)β_{min}及 选定激光波长下的最小泵浦功率密度 I_{min}。

2 实 验

2.1 近红外波段光谱

Yb,Na: CaF₂-SrF₂ 混晶对近红外波段不同波 长的吸收程度可以用吸收光谱确定。在吸收光谱 实验中,测量波段为 870~1 150 nm,步径 1 nm (Cary 5000 紫外分光光度计,美国 VARIAN 公 司)。吸收系数(α)可根据光的吸收定律 *I*/*I*₀ = $e^{-\alpha L}$ (Lambert's law),由公式 α = 2.303*D*/*L* 计算 得到,其中 *I* 为透过介质后的光强度,*I*₀ 为入射光 强度,*D* 为测试吸收光谱时获得的各波长下的光 密度即 lg(*I*/*I*₀),*L* 为样品厚度。Yb³⁺ 的吸收截 面由 $\sigma_{abs} = \alpha/N$ 计算得到,其中 *N* 是 Yb³⁺ 在 Yb, Na: CaF₂-SrF₂ 混晶中的离子格位浓度,由 *N* = ρ · $\omega \cdot N_A/M$ 决定,其中密度 ρ 为 4.68 g · cm⁻³, ω 为掺杂离子浓度,*N*_A 为阿伏伽德罗常数,*M* 为分 子质量。

发射光谱反映的是光子从激发态到基态过程中 不同的能量分布。本实验在激发波长915,980 nm 条 件下,采用稳态时间分辨荧光光谱仪测定 Yb,Na: CaF₂-SrF₂ 混晶的近红外波段发射光谱,步径分别为 1,0.25 nm(FLS-980 型,英国爱丁堡公司)。结合公 式(1)列出的 Fuchtbauer-Ladenburg 公式,计算 Yb³⁺ 从²F_{5/2}到²F_{7/2}能级跃迁的发射截面:

$$\sigma_{\rm em}(\lambda) = \frac{\lambda^5 I(\lambda)}{8\pi n^2 c \tau_{\rm rad} \int \lambda I(\lambda) \, \mathrm{d}\lambda},\tag{1}$$

其中, $I(\lambda)$ 为发射光谱在波长 λ 处的发射强度,c为 光速, τ_{rad} 为辐射寿命,n为折射率。Yb³⁺具有较高 的荧光量子效率,可采用荧光寿命代替辐射寿命来 计算发射截面。1 036 nm 处折射率n取1.48。

Yb³⁺离子在²F_{5/2}→²F_{7/2}能级之间跃迁对应 的是近红外波段的荧光寿命,其原理与实验过程 可描述如下。Yb, Na: CaF₂-SrF₂ 样品在 980 nm 激发下,粒子跃迁到激发态²F_{5/2},再通过辐射跃 迁方式回到基态²F_{7/2},该过程中发出荧光。当激 发停止后,分子荧光强度降到激发时最大强度的 1/e 所需的时间,即为荧光寿命。实验中随着时 间变化的分子荧光强度数据由瞬态时间分辨荧光 光谱仪记录(FLS-980 型,英国爱丁堡公司)。实 验数据采用双指数函数进行拟合,结合公式(2) 给出的平均寿命算法,可得到平均寿命:

$$\tau = \frac{A_1 t_1^2 + A_2 t_2^2}{A_1 t_1 + A_2 t_2},\tag{2}$$

其中, A_1 、 A_2 为拟合常数, t_1 、 t_2 为拟合寿命,均由 拟合结果得到。

上述实验使用的样品厚度均为1 mm。

2.2 激光参数评估

衡量激光晶体性能的激光参数包括:增益截面(σ_{g})、最小粒子数反转比(β_{min})、饱和泵浦功率密度(I_{sat})和最小泵浦功率密度(I_{min})。

增益截面 (σ_g) 可由公式(3)计算得到:

 $\sigma_{g} = \beta \cdot \sigma_{em} - (1 - \beta) \cdot \sigma_{abs}, \quad (3)$ 其中 β 为激发态粒子数反转比, σ_{abs} 为吸收截面, σ_{em} 为发射截面。 β_{min} 由公式(4)得到:

$$\beta_{\min} = \frac{\sigma_{abs}(\lambda)}{\sigma_{abs}(\lambda) + \sigma_{em}(\lambda)}, \qquad (4)$$

饱和泵浦功率密度用 *I*_{sat}来衡量,由公式(5)计算得到:

 $I_{sat} = h \cdot c / (\sigma_{abs} \cdot \lambda_{ex} \cdot \tau),$ (5) 其中 h 为普朗克常数, c 为真空中光速, λ_{ex} 为激发 波长, τ 为荧光寿命。最小泵浦功率密度(I_{min})通 过公式(6)计算:

 $I_{\min} = \beta_{\min} \cdot I_{sat}$, (6) 代表获得布居数反转所需的最小泵浦功率密度, 可用于衡量掺镱激光基质的激光品质因子。

3 结果与讨论

3.1 归一化光谱与荧光寿命

图1给出了Yb, Na: CaF₂-SrF₂混晶的归一 化吸收光谱与发射强度,1号黑色线代表吸收光 谱,2号蓝色线代表激发波长为915 nm 的发射 光谱,3号红色线代表激发波长为980 nm 的发 射光谱。由图1看出,Yb, Na: CaF₂-SrF₂混晶的 零声子线位于974 nm,其余两个吸收峰分别位 于934 nm 和1005 nm。其中1005 nm 处吸收 峰与发射光谱主峰1010 nm 有部分重叠,在设 计1010 nm 激光输出时,需注意晶体的自吸收 现象对激光泵浦条件及激光输出的影响。发射 光谱肩峰1036 nm 尽管在发射强度上低于 1010 nm,但自吸收弱,更容易实现激光输出。 通过洛伦兹拟合分析吸收光谱,可获得Yb, Na: CaF₂-SrF₂混晶在零声子线974 nm 处吸收带宽 为 22 nm。值得提出的是,相较于 970 nm 处的 3 nm 窄吸收带宽,Yb:YAG 晶体在940 nm 波长具 有较宽的吸收带宽 22 nm^[31-32]。鉴于较宽的吸 收带宽可降低激光系统对泵浦源控温精度的要 求,传统 Yb:YAG 激光采用泵浦波长940 nm。 综上,Yb,Na:CaF₂-SrF₂ 混晶在 974 nm 具有宽 吸收带宽,更能适应高功率 LD 泵浦。

- 图 1 Yb, Na: CaF₂-SrF₂ 混晶的归一化吸收光谱与发射强度。(1)吸收光谱;(2)激发波长为 915 nm 的发射光谱;(3)激发波长为 980 nm 的发射光谱。
- Fig. 1 Normalized absorption spectrum and Fluorescence spectra of Yb, Na: CaF₂-SrF₂ crystal. (1) Absorption spectrum. (2) Emission at $\lambda_{ex} = 915$ nm. (3) Emission at $\lambda_{ex} = 980$ nm.

从图 1 还可以看出,采用不同激发波长 915 nm 或 980 nm 时,Yb,Na: CaF₂-SrF₂ 混晶的发射 光谱峰位基本相近。这是由于发射光谱的峰型仅 与稀土离子格位结构相关,不随激发波长而改变。 但由于 Yb,Na: CaF₂-SrF₂ 混晶在 980 nm 具有更 强吸收,对应的归一化发射强度也相应较大。 Yb,Na: CaF₂-SrF₂ 混晶在 915 nm 激发条件下,发 射带宽为 56 nm。相比较而言,Yb: YAG 晶体的 近红外发射带宽很窄,仅 8.5 nm^[33]。由此可见, Yb,Na: CaF₂-SrF₂ 混晶在超快激光输出方面将更 具优势。

此外,依据零声子线位于 974 nm、激光输出 波长位于 1 036 nm 的光谱特征,可计算得到 Yb, Na: CaF₂-SrF₂ 混晶的量子缺陷为 5.98%,与 Yb: YAG 晶体的5.9% 相当(参照吸收峰位 969 nm、激 光波长 1 030 nm)。

图 2 给出了室温下 Yb, Na: CaF₂-SrF₂ 混晶 在²F_{5/2}→²F_{7/2}能级之间跃迁对应的荧光寿命曲 线。结合双指数函数拟合与平均寿命算法,获得 Yb³⁺离子在 Yb, Na: CaF₂-SrF₂ 混晶中的平均荧 光寿命为 228 μs。

图 2 Yb, Na: CaF₂-SrF₂ 混晶在 980 nm 激发下 1 036 nm 对应的室温荧光寿命曲线

Fig. 2 Room temperature fluorescence lifetime of 1 036 nm under excitation wavelength of 980 nm

3.2 吸收截面、发射截面与激光品质因子

表1列出了 Yb, Na: CaF₂-SrF₂ 混晶的吸收系 数(α)、吸收截面(σ_{abs})、发射截面(σ_{em})及激光 品质因子($\tau \times \sigma_{em}$)。由表1可知, Yb, Na: CaF₂-SrF₂ 混晶在吸收峰位 915, 932, 974, 980 nm 处的 吸收系数分别为 2. 25, 5. 03, 13. 09, 9. 92 cm⁻¹, 对应的吸收截面分别为 0. 53 × 10⁻²¹, 1. 18 × 10⁻²¹, 3. 08 × 10⁻²¹, 2. 33 × 10⁻²¹ cm²。 Yb, Na: CaF₂-SrF₂ 混晶在零声子线 974 nm 处具有最大的 吸收截面 3. 08 × 10⁻²¹ cm²。 Yb³⁺ 在 Yb, Na: CaF₂-SrF₂ 混晶中吸收截面较低,可理解为在碱土 金属氟化物中存在部分 Yb²⁺离子,后续可开展气 氛高温退火实验进行深入研究。

表1 Yb, Na: CaF₂-SrF₂ 混晶吸收系数(α)、吸收截面 (σ_{abs})、发射截面(σ_{em})及激光品质因子($\tau \times \sigma_{em}$)

Tab. 1 Absorption coefficient(α), absorption cross section ($\sigma_{\rm abs}$), emission cross section($\sigma_{\rm em}$) and laser quality factor($\tau \times \sigma_{\rm em}$) of Yb,Na: CaF₂-SrF₂

Absorption spectrum						
λ/nm		α/cm^{-1}	$\sigma_{\rm abs}/(10^{-21}~{\rm cm}^2)$			
915		2.25	0.53			
932		5.03	1.18			
974		13.09	3.08			
980		9.92	2.33			
	Emission spectrum					
$\lambda_{\rm ex}/$			au imes	au imes		
nm	$\sigma_{ m em,1~010~nm}/$	$\sigma_{ m em, 1~036~nm}/$	$\sigma_{ m em, 1\ 010\ nm}/$	$\sigma_{ m em, 1~036~nm}$ /		
mm	(10^{-20} cm^2)	(10^{-20} cm^2)	(10 ⁻²⁰	(10 ⁻²⁰		
		· · · ·	$ms \cdot cm^2$)	$ms \cdot cm^2$)		
915	4.38	2.44	1.00	0.56		
980	6.52	4.11	1.49	0.94		

表1还列出了 Yb, Na: CaF2-SrF2 混晶在1 010 nm 与1036 nm 处的发射截面与增益品质因子(τ× σ_{em})。一方面,高浓度 Yb³⁺掺杂可在激光介质 中获得较高发射截面,如Yb,Na:CaF2-SrF,混晶 在1036 nm 处的发射截面为4.11×10⁻²⁰ cm²; 另一方面,由于氟化物团簇效应,使得激发态原子 快速衰减,荧光寿命降低仅为228 µs。该结果与 钕离子(Nd³⁺)掺杂激光介质如Nd:YLF激光晶 体在1 053 nm 处的发射截面为 10 × 10⁻²⁰ cm²、荧 光寿命为485 μs 的情况相当^[34]。此外, Yb³⁺离 子的发射截面与荧光寿命存在此涨彼消的特征, 在掺 Yb3+碲酸盐玻璃、掺 Yb3+磷酸盐玻璃中也 有体现。比如掺 Yb3+碲酸盐玻璃的发射截面为 2.3×10⁻²⁰ cm²、荧光寿命为 0.90 ms^[35]。掺 Yb^{3+} 磷酸盐玻璃的发射截面为 1.0 × 10⁻²⁰ cm²、 荧光寿命为 2.0 ms^[36]。相比较而言, Yb, Na: CaF₂-SrF₂ 混晶的发射截面分别为掺镱碲酸盐玻 璃的1.8倍、掺镱磷酸盐玻璃的4倍,同时荧光寿 命分别为掺镱磷酸盐玻璃的约1/4、为掺镱磷酸 盐玻璃的约1/6,体现出发射截面与荧光寿命具 有相反的变化趋势。由此可见,高浓度 Yb3+ (15%) 掺杂在 Yb, Na: CaF₂-SrF₂ 混晶中获得的 发射截面与具有四能级结构的 Nd³⁺离子或掺镱激 光玻璃中的发射截面接近,均比具有准三能级结构 的低浓度 Yb³⁺掺杂的发射截面提高了一个数量 级。与此同时,高浓度 Yb3+(15%)掺杂在 Yb,Na: CaF₂-SrF₂混晶中表现出与具有四能级结构 Nd³⁺ 离子相近的荧光寿命数值。对照高浓度 Yb3+ (15%) 掺杂 Yb, Na: CaF₂-SrF, 混晶与钕离子 (Nd³⁺)掺杂Nd:YLF激光晶体的发射截面与荧光 寿命,可以看出,不同稀土离子中的粒子从激发态 跃迁到基态,若其荧光寿命数值落在同一数量级范 围内,则其发射强度也将处在同一个数量级。因此 可以得出如下结论:采用增益品质因子($\tau \times \sigma_{em}$) 将更有利于客观评价激光介质的激光特性。

图 3 给出了 Yb,Na: CaF₂-SrF₂ 混晶的吸收截面 (σ_{abs})及其在不同激发波长(915 nm 与 980 nm)下 的发射截面(σ_{em})。由图 3 看出,采用 915 nm 激发 时,可获得 974,1 010,1 036 nm 三个主发射峰。其中 974 nm 为零声子线峰位,存在严重自吸收现象,激光 输出受到限制;1 010 nm 处的发射截面为 4.38 × 10^{-20} cm²,1 036 nm 处的发射截面为 2.44 × 10⁻²⁰ cm²。采用 980 nm 激发时,1 010 nm 处的发射截面 为6.52×10⁻²⁰ cm²,1036 nm 处的发射截面为4.11×10⁻²⁰ cm²。与激发波长 915 nm 相比,采用激发 波长 980 nm 在1010 nm、1036 nm 处获得的发射 截面可分别提高 1.49 倍与 1.68 倍。

图 3 Yb, Na: CaF₂-SrF₂ 混晶吸收截面(σ_{abs})与发射截面 (σ_{em})

Fig. 3 Absorption cross section (σ_{abs}) and emission cross section(σ_{em}) of Yb,Na: CaF₂-SrF₂ crystal

3.3 增益截面

图 4 给出了 Yb, Na: CaF₂-SrF₂ 混晶在不同激 发波长 915 nm 和 980 nm 的增益截面,选取布居

图 4 Yb,Na: CaF₂-SrF₂ 混晶在不同布居反转比例β下的增 益截面。(a)激发波长 980 nm;(b)激发波长 915 nm。

Fig. 4 Gain cross section at different population inversion β in Yb, Na: CaF₂-SrF₂ crystal under different excitation wavelength of 980 nm(a) and 915 nm(b) 反转比例 $\beta = 0, 0.25, 0.5, 0.75, 1$ 。当 $\beta = 0$ 时, 对应的增益截面曲线即为吸收截面。当 $\beta = 1$ 时, 增益截面与采用 F-L 公式计算得到的发射截面一 致。当激发波长为 915 nm,获得全波半高宽 (FWHM)为56 nm。当 $\beta = 0.5$ 时,在激发波长 915 nm 条件下,1 010 nm、1 036 nm 处的增益截面 (σ_g)分别为2.2×10⁻²⁰ cm²与1.2×10⁻²⁰ cm²。 与此同时,在激发波长 980 nm 条件下,1 010 nm、 1 036 nm 处的增益截面(σ_g)分别为3.3×10⁻²⁰ cm²与2.1×10⁻²⁰ cm²。与 915 nm 激发条件相 比,980 nm 激发可获得更大增益截面。综上,Yb, Na: CaF₂-SrF₂ 混晶适合采用 980 nm 作为泵浦波 长获得高增益截面;同时该晶体在不同布居反转 比例 β 条件下,具有宽而平坦的增益截面曲线,有 利于获得宽带调谐和超短脉冲激光输出。

3.4 激光参数

为了获得特定激光输出波长 1 010 nm 与 1 036 nm 的泵浦光条件,表 2 列出了 Yb, Na: CaF₂-SrF₂ 混晶在零声子线 974 nm 泵浦下所需的 最小粒子数反转比 β_{min} 及最小泵浦功率密度 I_{min} ,并对采用不同激发波长 915 nm 与 980 nm 得 到的实验结果进行了对比。由表 2 看出,采用 980 nm 激发波长,发射波长 1 010 nm 和 1 036 nm 处实现布居反转需要激发的激活粒子数的最小分 数 β_{min} 分别为 0. 74%、0. 34%,分别是采用 915 nm 激发波长时所对应的 β_{min} 值的 70% 左右。

表 2 Yb,Na: CaF₂-SrF₂ 混晶中最小粒子数反转比 β_{min} 及最小泵浦功率密度 I_{min}

Tab. 2 β_{\min} and I_{\min} in Yb, Na: CaF₂-SrF₂ under excitation wavelength (λ_{ex}) of 915 nm and 980 nm

λ_{ex}/nm	$\lambda_{ m laser}/ m nm$	$m{eta}_{ m min}$ /%	$I_{\rm min}/(\rm kW\cdot \rm cm^{-2})$
015	1 010	1.10	3.18
915	1 036	0.57	1.66
000	1 010	0.74	2.15
980	1 036	0.34	0.99

表 2 中还列出了最小泵浦功率密度(*I*_{min}), 对应于图 5 中获得特定激光输出波长 1 010 nm 与1 036 nm 所需的 *I*_{min}。结合图 5 及表 2 可知, 采用泵浦波长 980 nm 时,激光输出波长 1 010 nm 与1 036 nm 所对应的 *I*_{min}分别为 2.15 kW · cm⁻² 和 0.99 kW · cm⁻²,分别是采用 915 nm 激发波长 时所对应的 *I*_{min} 值的 2/3 左右。由此可见,采用 激发波长为 980 nm 时, Yb, Na: CaF₂-SrF₂ 混晶在 激光输出波长 1 036 nm 处的最小粒子分数 β_{min} 值最小、最小泵浦功率密度 I_{min} 也最小。综上,相 较于 1 010 nm, Yb, Na: CaF₂-SrF₂ 混晶更易在 1 036 nm 实现激光输出。

- 图 5 Yb, Na: CaF₂-SrF₂ 混晶的最小泵浦功率密度随不同 泵浦波长变化曲线。(a)980 nm;(b)915 nm。
- Fig. 5 Minimum pump density I_{min} of Yb, Na: CaF₂-SrF₂ under different excitation wavelength of 980 nm(a) and 915 nm(b)

采用 InGaAs-LD 泵浦掺镱激光系统,Yb³⁺需 克服基态吸收损耗以获得充分增益,使光子从基 态到达激发态。 I_{sat} 可用于评估基态吸收损耗。 Yb,Na: CaF₂-SrF₂ 混晶在零声子线 974 nm 处的 I_{sat} 为 290.58 kW · cm⁻²。相比较而言,Yb: Sc₂SiO₅(Yb: SSO)晶体在零声子线 979.5 nm 处的 I_{sat} 为 15.4 kW · cm⁻²,Yb: Lu₂Si₂O₇(Yb: LPS)晶体中为 8.5 kW · cm⁻²,Yb: Lu₂SiO₅(Yb: LSO)晶体中为 9.1 kW · cm⁻²,Yb: Y₂SiO₅(Yb: YSO)晶体中为 11.2 kW · cm⁻²[7,37-39]。综合来看,上述掺镱激光晶 体的 I_{sat} 范围在 8.5 ~ 15.4 kW · cm⁻²。由于 In-GaAs-LD 泵浦源受到峰值功率限制,当 Yb³⁺在指 定峰值功率下需要积累更大布居数转换时,需要 激光介质具有更大的饱和泵浦功率密度。而 Yb, Na: CaF₂-SrF₂ 混晶在零声子线 974 nm 处的 I_{sat} 相较于上述掺镱激光晶体高出一个数量级,表明 Yb,Na: CaF₂-SrF₂ 混晶更适合用作产生高能量激 光输出的激光增益介质。

4 结 论

高浓度镱钠共掺氟化钙锶混晶(15% Yb, 20% Na: CaF₂-SrF₂, CaF₂: SrF₂ = 1:1) 具有较 宽的吸收带宽(22 nm) 与发射带宽(56 nm), 发射截面较大(4.11 × 10⁻²⁰ cm² @ 1 036 nm),在²F_{5/2}→²F_{7/2}能级之间跃迁对应的荧光寿 命为 228 μs。实现1 036 nm 布居反转的最小粒 子数反转比(β_{min})为 0.34%,最小泵浦功率密度 (I_{min})为 0.99 kW·cm⁻²,在零声子线 974 nm 处 的饱和泵浦功率密度 I_{sat} 为 290.58 kW·cm⁻²,在 近红外波段高能量激光器中具有潜在应用前景。 后续将开展 Yb, Na: CaF₂-SrF₂ 混晶的 1 036 nm 激光输出实验。

本文专家审稿意见及作者回复内容的下载地址: http://cjl.lightpublishing.cn/thesisDetails#10.37188/ CJL.20210358.

参考文献:

- [1] ISINGER M, SQUIBB R J, BUSTO D, et al. Photoionization in the time and frequency domain [J]. Science, 2017, 358 (6365):893-896.
- [2] KERSE C, KALAYCIOĞLU H, ELAHI P, et al. Ablation-cooled material removal with ultrafast bursts of pulses [J]. Nature, 2016,537(7618):84-88.
- [3] ZHENG L H, KAUSAS A, TAIRA T. Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser [J]. Opt. Mater. Express, 2017,7(9):3214-3221.
- [4] ZHAO Y Q, WANG Q G, MENG L H, et al. Anisotropy of the thermal and laser output properties in Yb, Nd: Sc₂SiO₅ crystal [J]. Chin. Opt. Lett., 2021,19(4):041405-1-5.
- [5] ZHENG L, XU J, ZHAO G, et al. Bulk crystal growth and efficient diode-pumped laser performance of Yb³⁺: Sc₂SiO₅[J].
 Appl. Phys. B, 2008,91(3):443-445.
- [6] ZHENG L H, KAUSAS A, TAIRA T. > 30 MW peak power from distributed face cooling tiny integrated laser [J]. Opt. Express, 2019,27(21):30217-30224.
- [7] 姜豪,徐浏,陈小明,等. 端抽运准连续 Yb: SSO 激光实验研究 [J]. 中国激光, 2016,43(11):1101007-1-5.
 JIANG H, XU L, CHEN X M, et al. Experimental research on end-pumped quasi-continuous wave Yb: SSO laser [J].
 Chin. J. Lasers, 2016,43(11):1101007-1-5. (in Chinese)
- $\begin{bmatrix} 8 \end{bmatrix}$ ZOU Z T,ZHENG L H,WANG J T,*et al.* Crystal growth and photoluminescence spectra properties of $(Yb_xNd_ySc_{1-x-y})_2SiO_5$ laser crystal $\begin{bmatrix} J \end{bmatrix}$. *Laser Phys. Lett.*, 2018,15(8):085703-1-6.
- [9] ROUSSE A, RISCHEL C, FOURMAUX S, et al. Non-thermal melting in semiconductors measured at femtosecond resolution
 [J]. Nature, 2001,410(6824):65-68.
- [10] CAIRD J, AGRAWAL V, BAYRAMIAN A, et al. Nd: glass laser design for Laser ICF Fission Energy (LIFE) [J]. Fusion Sci. Technol., 2009,56(2):607-617.
- [11] SCHAFFERS K I, TASSANO J B, BAYRAMIAN A B, et al. Growth of Yb: S-FAP [Yb³⁺: Sr₅(PO₄)₃F] crystals for the mercury laser [J]. J. Cryst. Growth, 2003,253(1-4):297-306.
- [12] YOSHIOKA H, NAKAMURA S, OGAWA T, et al. Diode-pumped mode-locked Yb: YAG ceramic laser [J]. Opt. Express, 2009,17(11):8919-8925.
- [13] SIEBOLD M, HORNUNG M, HEIN J, et al. High-peak power diode-pumped Yb: CaF₂ laser [C]. CLEO/Europe-EQEC 2009-European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, 2009:1.
- [14] TIAN Y, LIU J S, BAI Y F, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation [J]. Nat. Photonics, 2017,11(2):242-246.
- [15] KIRIYAMA H, MORI M, PIROZHKOV A S, et al. High-contrast, high-intensity petawatt-class laser and applications [J].

IEEE J. Sel. Top. Quantum Electron. , 2015,21(1):1601118-1-17.

- [16] DANSON C, HILLIER D, HOPPS N, et al. Petawatt class lasers worldwide [J]. High Power Laser Sci. Eng., 2015, 3:E3-1-14.
- [17] BANERJEE S, ERTEL K, MASON P D, et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb: YAG laser [J]. Opt. Express, 2015,23(15):19542-19551.
- [18] 张钦辉,甄西合,史达威,等. φ370 mm 高质量 CaF₂ 晶体的生长 [J]. 人工晶体学报, 2016,45(12):2935-2936.
 ZHANG Q H, ZHEN X H, SHI D W, et al. Growth of high-quality CaF₂ crystal with φ370 mm [J]. J. Synth. Cryst., 2016,45(12):2935-2936. (in Chinese)
- [19] 徐悟生,彭明林,杨春晖. 8 英寸氟化钙单晶生长 [J]. 人工晶体学报, 2021,50(3):407-409.
 XU W S, PENG M L, YANG C H. Growth of 8-inch CaF₂ single crystal [J]. J. Synth. Cryst., 2021,50(3):407-409.
 (in Chinese)
- [20] ZHENG L H, ZHAO J B, WANG Y X, et al. Mid-IR optical property of Dy: CaF₂-SrF₂ crystal fabricated by multicrucible temperature gradient technology [J]. Crystals, 2021,11(8):907-1-9.
- [21] 阮芳芳,杨龙,胡广,等. 多坩埚温度梯度法生长 Dy³⁺: LaF₃晶体及发光特性 [J]. 发光学报, 2021,42(2): 158-164.
 RUAN F F, YANG L, HU G, *et al.* Luminescence properties of Dy³⁺ doped lanthanum fluoride crystal by multi-crucible

RUAN F F, YANG L, HU G, *et al.* Luminescence properties of Dy³⁺ doped lanthanum fluoride crystal by multi-crucible temperature gradient technology [J]. *Chin. J. Lumin.*, 2021,42(2):158-164. (in Chinese)

- [22] LIUJ, FENG C, SU L B, et al. Characteristics of a diode-pumped Yb: CaF₂-SrF₂ mode-locked laser using a carbon nanotube absorber [J]. Laser Phys. Lett. ,2013,10(10):105806-1-4.
- [23] 吴叶青,苏良碧,徐军,等. Yb: CaF₂-SrF₂ 激光晶体光谱性能以及热学性能的研究 [J]. 物理学报, 2012,61(17): 177801-1-6.
 WU Y Q, SU L B, XU J, *et al.* Spectroscopic and thermal properties of Yb doped CaF₂-SrF₂ laser crystal [J]. *Acta Phys. Sinica*, 2012,61(17):177801-1-6. (in Chinese)
- [24] JIANG B B, ZHENG L H, JIANG D P, et al. Growth and optical properties of ytterbium and rare earth ions codoped CaF₂-SrF₂ eutectic solid-solution (RE = Y³⁺, Gd³⁺, La³⁺) [J]. J. Rare Earths, 2021, 39(4):390-397.
- [25] MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE^{3+} (RE = Y, La ~ Lu) in MF_2 (M = Ca, Sr, Ba) fluorites [J]. Mater. Res. Bull., 2020,125:110788-1-12.
- [26] 葛文琦,柴路,胡明列,等. 镱钠共掺氟化钙锁模激光器产生 190 fs 光脉冲 [J]. 物理学报, 2012,61(1):014213-1-5.

GE W Q, CHAI L, HU M L, *et al.* Generation of 190 fs optical pulses from a mode-locked Yb, Na: CaF₂ laser [J]. Acta Phys. Sinica, 2012,61(1):014213-1-5. (in Chinese)

- [27] GE W Q, CHAI L, YAN J, et al. High power continuous-wave operation and dynamics of soliton mode-locked Yb, Na: CaF₂ lasers at room temperature [J]. IEEE J. Quantum Electron., 2011,47(7):977-983.
- [28] 葛文琦,柴路,闫杰,等. 半导体激光器抽运的连续锁模镱钠共掺氟化钙激光器 [J]. 中国激光, 2010,37(11): 2803-2806.
 GE W Q, CHAI L, YAN J, *et al.* Laser diode-pumped continuous-wave mode-locked Yb, Na: CaF₂ laser [J]. *Chin. J. Lasers*, 2010,37(11): 2803-2806. (in Chinese)
- [29] 柴路,葛文琦,闫杰,等. 高功率激光二极管抽运的镱钠共掺氟化钙连续激光器 [J]. 中国激光, 2009,36(7):1700-1703.
 CHAI L,GE W Q,YAN J, et al. High-power laser diode-pumped Yb,Na: CaF₂ continuous-wave laser [J]. Chin. J. Lasers, 2009,36(7):1700-1703. (in Chinese)
- [30] GECHEV S M, ILIEV H, GANEV V, et al. Yb, Na: CaSrF₂—a promising laser crystal medium in UV-Vis-near-IR domain [C]. 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015:1-4.
- [31] KASAMATSU T, SEKITA H, KUWANO Y. Temperature dependence and optimization of 970-nm diode-pumped Yb: YAG and Yb: LuAG lasers [J]. Appl. Opt., 1999,38(24):5149-5153.
- [32] QIU H W, YANG P Z, DONG J, et al. The influence of Yb concentration on laser crystal Yb: YAG [J]. Mater. Lett., 2002,55(1-2):1-7.

- [33] SAIKAWA J, SATO Y, TAIRA T, et al. Absorption, emission spectrum properties, and efficient laser performances of Yb: Y₃ScAl₄O₁₂ ceramics [J]. Appl. Phys. Lett., 2004,85(11):1898-1900.
- [34] WANG S X, SUN X L, LIU H L, et al. Femtosecond laser direct writing of Nd: YLF cladding waveguides for efficient 1 047nm laser emission [J]. Opt. Mater. Express, 2021, 11(9):2915-2923.
- [35] JIANG C, GAN F X, ZHANG J Z, et al. Yb: tellurite laser glass with high emission cross-section [J]. Mater. Lett., 1999, 41(4):209-214.
- [36] JIANG C, LIU H, ZENG Q J, et al. Yb: phosphate laser glass with high emission cross-section [J]. J. Phys. Chem. Solids, 2000,61(8):1217-1223.
- [37] ZHENG L H,ZHAO G J, YAN C F, et al. Growth and spectroscopic characteristics of Yb: LPS single crystal [J]. J. Cryst. Growth, 2007, 304(2):441-447.
- [38] THIBAULT F, PELENC D, DRUON F, et al. Efficient diode-pumped Yb³⁺: Y₂SiO₅ and Yb³⁺: Lu₂SiO₅ high-power femtosecond laser operation [J]. Opt. Lett., 2006,31(10):1555-1557.
- [39] GAUME R, HAUMESSER P H, VIANA B, et al. Optical and laser properties of Yb: Y₂SiO₅ single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials [J]. Opt. Mater., 2002, 19(1):81-88.

杨洁(1997-),女,山西临汾人,博 士研究生,2021年于云南师范大学 获得硕士学位,主要从事稀土离子 光谱与超快激光的研究。

E-mail: Yangjie0816@ mail. ynu. edu. cn

郑丽和(1983 -),女,浙江乐清人,博 士,教授,2009 年于中国科学院上海 硅酸盐研究所获得博士学位,主要从 事激光材料与器件及其应用、先进室 温复合装备的研究。

Email: zhenglihe@ ynu. edu. cn