浏览全部资源
扫码关注微信
1.五邑大学 应用物理与材料学院,广东 江门 529020
2.华南农业大学 材料与能源学院,广东 广州 510642
[ "兰月梅(1993-),女,山西吕梁人,硕士研究生,2018年于天津职业技术师范大学获得学士学位,主要从事钙钛矿量子点玻璃及稀土荧光粉的研究。E-mail: wydxlym@163.com" ]
[ "陈岩(1982-),女,山东济宁人,博士,副教授,2013年于中山大学获得博士学位,主要从事稀土光转材料和量子点发光材料的研究。E-mail: ychen08@163.com" ]
纸质出版日期:2021-05-01,
收稿日期:2021-01-02,
修回日期:2021-01-25,
移动端阅览
兰月梅, 王栋, 张国星, 等. 铯铅卤化物钙钛矿量子点从玻璃中析出的诱导因素[J]. 发光学报, 2021,42(5):605-619.
YUE-MEI LAN, DONG WANG, GUO-XING ZHANG, et al. Inducing Factors for Precipitation of Cesium Lead Halide Perovskite Quantum Dots from Glass. [J]. Chinese journal of luminescence, 2021, 42(5): 605-619.
兰月梅, 王栋, 张国星, 等. 铯铅卤化物钙钛矿量子点从玻璃中析出的诱导因素[J]. 发光学报, 2021,42(5):605-619. DOI: 10.37188/CJL.20210011.
YUE-MEI LAN, DONG WANG, GUO-XING ZHANG, et al. Inducing Factors for Precipitation of Cesium Lead Halide Perovskite Quantum Dots from Glass. [J]. Chinese journal of luminescence, 2021, 42(5): 605-619. DOI: 10.37188/CJL.20210011.
铯铅卤化物(CsPb
X
3
X
=Cl
Br
I)钙钛矿量子点以其优异的光电性能(如可调的发射光谱、高色纯度和量子效率等)引起了研究者们的广泛关注,但较差的水稳定性、热稳定性和光稳定性等缺点极大地限制了其在光电器件中的应用。目前,提高铯铅卤化物钙钛矿量子点稳定性的一种有效方法是将Cs
X
和Pb
X
2
加入惰性玻璃陶瓷基质中,只要外界提供的能量可以克服成核和晶体生长的能量障碍,玻璃中就会析出铯铅卤化物钙钛矿量子点。本文重点介绍了热处理、激光、应力和水四种铯铅卤化物钙钛矿量子点从玻璃中析出的诱导因素,并分析了每种诱导因素的优缺点,最后提出了每种诱导因素相对适合的玻璃陶瓷和一些建议。
Cesium lead halide(CsPb
X
3
X
=Cl
Br
I) perovskite quantum dots have attracted wide attention of researchers due to their excellent photoelectric properties such as adjustable emission spectra
high color purity and high quantum efficiency. Poor water stability
thermal stability
and light stability greatly limit its application in optoelectronic devices. At present
an effective way to improve the stability of cesium lead halide perovskite quantum dots is adding Cs
X
and Pb
X
2
to the glass ceramic matrix. As long as the energy provided by the outside can overcome the energy barriers of nucleation and crystal growth
cesium lead halide perovskite quantum dots will be precipitated from glass. This paper focuses on four inducing factors for the precipitation of cesium lead halide perovskite quantum dots from glass
namely heat treatment
laser
stress and water. Finally
this paper analyzes the advantages and disadvantages of each inducing factor
and puts forward the suitable glass ceramics and some suggestions for each inducing factor.
钙钛矿量子点微晶玻璃诱导因素光致发光
perovskite quantum dotglass ceramicsinducing factorphotoluminescence
YU J X, LIU G X, CHEN C M, et al.. Perovskite CsPbBr3 crystals: growth and applications[J].J. Mater. Chem. C, 2020, 8(19):6326-6341.
YANG B B, ZHENG F, MEI S L, et al.. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J].Appl. Surf. Sci., 2020, 512:145655.
JUAN F Y, XU F, WANG M, et al.. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods[J].Chem. Phys., 2020, 530:110627.
SHEN C Y, ZHAO Y, YUAN L, et al.. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield[J].Chem. Eng. J., 2020, 382:122868.
LIU Y, GAO Z H, ZHANG W G, et al.. Stimulated emission from CsPbBr3 quantum dot nanoglass[J].Opt. Mater. Express, 2019, 9(8):3390-3405.
LIU S J, HE M L, DI X X, et al.. CsPbX3 nanocrystals films coated on YAG∶Ce3+ PiG for warm white lighting source[J].Chem. Eng. J., 2017, 330:823-830.
KOZLOV O V, SINGH R, AI B, et al.. Transient spectroscopy of glass-embedded perovskite quantum dots:novel structures in an old wrapping[J].Z. Phys. Chem., 2018, 232(9-11):1495-1511.
CHEN D Q, LI J N, CHEN X, et al.. Grinding synthesis of APbX3 (A=MA,FA,Cs;X=Cl,Br,I) perovskite nanocrystals[J].ACS Appl. Mater. Interfaces, 2019, 11(10):10059-10067.
WANG Z M, WANG Y, NIE Z H, et al.. Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets[J].Nanoscale Adv., 2019, 1(11):4459-4465.
LIU X F, ZHOU J J, ZHOU S F, et al.. Transparent glass-ceramics functionalized by dispersed crystals[J].Prog. Mater. Sci., 2018, 97:38-96.
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J].Chem. Soc. Rev., 2019, 48(1):310-350.
WANG C Y, LIN H, ZHANG Z J, et al.. X-ray excited CsPb(Cl,Br)3 perovskite quantum dots-glass composite with long-lifetime[J].J. Eur. Ceram. Soc., 2020, 40(5):2234-2238.
SONG P J, QIAO B, SONG D D, et al.. Enhancing the stability and water resistance of CsPbBr3 perovskite nanocrystals by using tetrafluoride and zinc oxide as protective capsules[J].J. Mater. Sci., 2020, 55(23):9739-9747.
ZHANG Q, YIN Y D. All-inorganic metal halide perovskite nanocrystals:opportunities and challenges[J].ACS Cent. Sci., 2018, 4(6):668-679.
GAO L, YAN Q F. Recent advances in lead halide perovskites for radiation detectors[J].Sol. RRL, 2020, 4(2):1900210.
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al.. Crystal growth of the perovskite semiconductor CsPbBr3:a new material for high-energy radiation detection[J].Cryst. Growth Des., 2013, 13(7):2722-2727.
HE Y H, MATEI L, JUNG H J, et al.. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J].Nat. Commun., 2018, 9(1):1609-1-8.
LI J C, DU X Y, NIU G D, et al.. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J].ACS Appl. Mater. Interfaces, 2020, 12(1):989-996.
ZENG J P, MENG C F, LI X M, et al.. Interfacial-tunneling-effect-enhanced CsPbBr3 photodetectors featuring high detectivity and stability[J].Adv. Func. Mater., 2019, 29(51):1904461-1-9.
SAIDAMINOV M I, HAQUE M A, ALMUTLAQ J, et al.. Inorganic lead halide perovskite single crystals:phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection[J].Adv. Opt. Mater., 2017, 5(2):1600704.
ZHANG P, ZHANG G D, LIU L, et al.. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J].J. Phys. Chem. Lett., 2018, 9(17):5040-5046.
SONG J Z, CUI Q Z, LI J H, et al.. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors[J].Adv. Opt. Mater., 2017, 5(12):1700157-1-8
YU M Q, YU X L, LONG N B, et al.. Fabrication and microstructure of perovskite CsPbCl3 nanocrystallized chalcogenide glass-ceramics[J].J. Am. Ceram. Soc., 2019, 102(9):5045-5049.
HE M L, CHENG Y Z, YUAN R R, et al.. Mn-Doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED[J].Dyes Pigm., 2018, 152:146-154.
KANG C Y, LIN C H, LIN C H, et al.. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper[J].Adv. Sci., 2019, 6(24):1902230-1-8.
ZHANG H L, YUAN L, CHEN Y, et al.. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization[J].Chem. Commun., 2020, 56(19):2853-2856.
ZHANG Q G, WANG B, ZHENG W L, et al.. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates[J].Nat. Commun., 2020, 11(1):31-1-9.
ZHANG J H, LIU C, HEO J. Mid-infrared luminescence from Sn-modified PbSe quantum dots in silicate glasses[J].J. Non-Cryst. Solids, 2016, 431:93-96.
HAN N, LIU C, ZHAO Z Y, et al.. Quantum dots in glasses:size-dependent stokes shift by lead chalcogenide[J].Int. J. Appl. Glass Sci., 2015, 6(4):339-344.
LIU H Y, TAN Y S, CAO M H, et al.. Fabricating CsPbX3-based type Ⅰ and type Ⅱ heterostructures by tuning the halide composition of janus CsPbX3/ZrO2 nanocrystals[J].ACS Nano, 2019, 13(5):5366-5374.
XU K, LIU C, CHUNG W J, et al.. Optical properties of CdSe quantum dots in silicate glasses[J].J. Non-Cryst Solids, 2010, 356(44-49):2299-2301.
YUAN R R, CHENG Y Z, LIU S N, et al.. Multicolour light-emitting diodes based on CsPbX3(X=Br,I) quantum dots glasses solid materials[J].Mater. Lett., 2018, 229:290-292.
DI X X, SHEN L D, JIANG J T, et al.. Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles[J].J. Alloys Compd., 2017, 729:526-532.
ZHANG X Y, SUN C, ZHANG Y, et al.. Bright perovskite nanocrystal films for efficient light-emitting devices[J].J. Phys. Chem. Lett., 2016, 7(22):4602-4610.
SONG Y H, YOO J S, KANG B K, et al.. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs[J].Nanoscale, 2016, 8(47):19523-19526.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3,X=Cl,Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
QIAO B, SONG P J, CAO J Y, et al.. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell like structure lead halide perovskite nanocrystals[J].Nanotechnology, 2017, 28(44):445602.
XU J W, HUANG W X, LI P Y, et al.. Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6:kinetics, enhanced oscillator strength, and application in light-emitting diodes[J].Adv. Mater., 2017, 29(43):1703703-1-10.
WANG B, ZHANG C Y, HUANG S Q, et al.. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability[J].ACS Appl. Mater. Interfaces, 2018, 10(27):23303-23310.
CHEN D Q, YUAN S, CHEN X, et al.. CsPbX3 (X=Br,I) perovskite quantum dot embedded low-melting phosphosilicate glasses:controllable crystallization, thermal stability and tunable emissions[J].J. Mater. Chem. C, 2018, 6(25):6832-6839.
LIU S J, HE M L, DI X X, et al.. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3,X=Br,I) QDs in borosilicate glass[J].Ceram. Int., 2018, 44(4):4496-4499.
CHEN D Q, YUAN S, CHEN J K, et al.. Robust CsPbX3(X=Cl,Br, and I) perovskite quantum dot embedded glasses:nanocrystallization, improved stability and visible full-spectral tunable emissions[J].J. Mater. Chem. C, 2018, 6(47):12864-12870.
XIAO Z H, SUN X Y, LI X Y, et al.. Phase transformation of GeO2 glass to nanocrystals under ambient conditions[J].Nano Lett., 2018, 18(5):3290-3296.
YAMADA M, MINOWA M, SATO S, et al.. Thermal carbosilylation of endohedral dimetallofullerene La2@Ih-C80 with silirane[J].J. Am. Chem. Soc., 2010, 132(50):17953-17960.
ZHANG R, LIN H, YU Y L, et al.. A new-generation color converter for high-power white LED:transparent Ce3+∶YAG phosphor-in-glass[J].Laser Photonics Rev., 2014, 8(1):158-164.
ROSENFLANZ A, FREY M, ENDRES B, et al.. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides[J].Nature, 2004, 430(7001):761-764.
LIN H, HU T, CHENG Y, et al.. Glass ceramic phosphors:towards long-lifetime high-power white light-emitting-diode applications—a review[J].Laser Photonics Rev., 2018, 12(6):1700344-1-31.
郑飞, 茅云蔚, 杨波波, 等. 基于YAG∶Ce3+荧光粉复合Eu3+掺杂荧光玻璃的激光照明器件[J].发光学报, 2019, 40(7):842-848.
ZHENG F, MAO Y W, YANG B B, et al.. Laser lighting device based on YAG∶Ce3+ phosphor composite Eu3+ doped phosphor-in-glasses[J].Chin. J. Lumin., 2019, 40(7):842-848.
BERENDS A C, VAN DE HAAR M A, KRAMES M R. YAG∶Ce3+ phosphor:from micron-sized workhorse for general lighting to a bright future on the nanoscale[J].Chem. Rev., 2020, 120(24):13461-13479.
LI S X, ZHU Q Q, WANG L, et al.. CaAlSiN3∶Eu2+ translucent ceramic:a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35):8197-8205.
ZHENG F, YANG B B, CAO P Y, et al.. A novel bulk phosphor for white LDs:CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J].J. Alloys Compd., 2020, 818:153307.
LIU S J, LUO Y K, HE M L, et al.. Novel CsPbI3 QDs glass with chemical stability and optical properties[J].J. Eur. Ceram. Soc., 2018, 38(4):1998-2004.
CHEN D Q, LIU Y, YANG C B, et al.. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X=Cl,Br,I) perovskite quantum dots through fluorine doping[J].Nanoscale, 2019, 11(37):17216-17221.
CAO E H, QIU J B, ZHOU D C, et al.. The synthesis of a perovskite CsPbBr3 quantum dot superlattice in borosilicate glass[J].Chem. Commun., 2020, 56(32):4460-4463.
LIU S N, SHAO G Z, DING L, et al.. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J].Chem. Eng. J., 2019, 361:937-944.
YUAN R R, SHEN L L, SHEN C Y, et al.. CsPbBr3∶xEu3+ perovskite QD borosilicate glass:a new member of the luminescent material family[J].Chem. Commun., 2018, 54(27):3395-3398.
LIU J M, LIU S N, CHEN Y, et al.. Sm3+-doped CsPbBr3 NCs glass:a luminescent material for potential use in lighting engineering[J].Ceram. Int., 2019, 45(17):22688-22693.
CHENG Y Z, SHEN C Y, SHEN L L, et al.. Tb3+, Eu3+ Co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J].ACS Appl. Mater. Interfaces, 2018, 10(25):21434-21444.
HE M L, CHENG Y Z, SHEN L L, et al.. Doping manganese into CsPb(Cl/Br)3 quantum dots glasses:dual-color emission and super thermal stability[J].J. Am. Ceram. Soc., 2019, 102(3):1090-1100.
HE M L, DING L, LIU S N, et al.. Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3-x nanocrystals[J].J. Alloys Compd., 2019, 780:318-325.
DING L, LIU S N, ZHANG Z L, et al.. Stable Zn-doped CsPbBr3 NCs glasses toward an enhanced optical performance for WLED[J].Ceram Int., 2019, 45(17):22699-22706.
ZHANG Z L, SHEN L L, ZHANG H L, et al.. Novel red-emitting CsPb1-xTixI3 perovskite QDs@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs[J].Chem Eng. J., 2019, 378:122125.
SHAO G Z, LIU S N, DING L, et al.. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes[J].Chem. Eng. J., 2019, 375:122031.
AI B, LIU C, WANG J, et al.. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J].J. Am. Ceram. Soc., 2016, 99(9):2875-2877.
XIANG X Q, LIN H, XU J, et al.. CsPb(Br,I)3 embedded glass:fabrication, tunable luminescence, improved stability and wide-color gamut LCD application[J].Chem. Eng. J., 2019, 378:122255.
WANG C Y, LIN H, XIANG X Q, et al.. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry[J].J. Mater. Chem. C, 2018, 6(37):9964-9971.
PANG X L, ZHANG H R, XIE L Q, et al.. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J].J. Mater. Chem. C, 2019, 7(42):13139-13148.
YE Y, ZHANG W C, ZHAO Z Y, et al.. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J].Adv. Opt. Mater., 2019, 7(9):1801663-1-11.
LI X Y, YANG C B, YU Y L, et al.. Dual-modal photon upconverting and downshifting emissions from ultra-stable CsPbBr3 perovskite nanocrystals triggered by Co-growth of Tm∶NaYbF4 nanocrystals in glass[J].ACS Appl. Mater. Interfaces, 2020, 12(16):18705-18714.
EROL E, KIBRISLI O, ERSUNDU M Ç, et al.. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J].Chem. Eng. J., 2020, 401:126053.
LAKSHMINARAYANA G, QIU J R. Photoluminescence of Pr3+,Sm3+ and Dy3+∶SiO2-Al2O3-LiF-GdF3 glass ceramics and Sm3+, Dy3+∶GeO2-B2O3-ZnO-LaF3 glasses[J].Phys. B Condens. Matter, 2009, 404(8-11):1169-1180.
YUAN S, CHEN D Q, LI X Y, et al.. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl. Mater. Interfaces, 2018, 10(22):18918-18926.
LI P P, DUAN Y M, LU Y, et al.. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J].Nanoscale, 2020, 12(12):6630-6636.
LIU Y, CHEN W, ZHONG J S, et al.. Upconversion luminescence in Yb/Ln (Ln=Er,Tm) doped oxyhalide glasses containing CsPbBr3 perovskite nanocrystals[J].J. Eur. Ceram. Soc., 2019, 39(14):4275-4282.
AI B, LIU C, DENG Z, et al.. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses[J].Phys. Chem. Chem. Phys., 2017, 19(26):17349-17355.
LI P P, XIE W Q, MAO W, et al.. A new whole family perovskites quantum dots (CsPbX3,X=Cl,Br,I) phosphate glasses with full spectral emissions[J].J. Alloys. Compd., 2020, 817:153338.
ZHUANG B, LIU Y, YUAN S, et al.. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing[J].Nanoscale, 2019, 11(32):15010-15016.
ZHANG X Z, GUO L Z, ZHANG Y H, et al.. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics[J].J. Am. Ceram. Soc., 2020, 103(9):5028-5035.
XIANG X Q, LIN H, LI R F, et al.. Stress-induced CsPbBr3 nanocrystallization on glass surface:unexpected mechanoluminescence and applications[J].Nano Res., 2019, 12(5):1049-1054.
WANG Y J, ZHANG R L, YUE Y, et al.. Room temperature synthesis of CsPbX3 (X=Cl,Br,I) perovskite quantum dots by water-induced surface crystallization of glass[J].J. Alloys Compd., 2020, 818:152872.
HU Y Z, ZHANG W C, YE Y, et al.. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion[J].ACS Appl. Nano Mater., 2020, 3(1):850-857.
HUANG X J, GUO Q Y, KANG S L, et al.. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J].ACS Nano, 2020, 14(3):3150-3158.
HUANG X J, GUO Q Y, YANG D D, et al.. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J].Nat. Photon., 2020, 14(2):82-88.
YANG C B, ZHUANG B, LIN J D, et al.. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J].Chem. Eng. J., 2020, 398:125616.
LIN J D, LU Y X, LI X Y, et al.. Perovskite quantum dots glasses based backlit displays[J].ACS Energy Lett., 2021, 6(2):519-528.
ZHANG L Q, LIN H, WANG C Y, et al.. A solid-state colorimetric fluorescence Pb2+-sensing scheme:mechanically-driven CsPbBr3 nanocrystallization in glass[J].Nanoscale, 2020, 12(16):8801-8808.
0
浏览量
574
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构