浏览全部资源
扫码关注微信
吉林建筑工程学院 材料科学与工程学院,吉林 长春,130021
收稿日期:2009-12-25,
修回日期:1900-01-02,
网络出版日期:2010-04-30,
纸质出版日期:2010-04-30
移动端阅览
王洪杰, 张春玉. 激子位置不同微腔有机电致发光器件性能模拟[J]. 发光学报, 2010,31(2):167-170.
WANG Hong-jie, ZHANG Chun-yu. Simulation of Microcavity Organic Light-emitting Device at Different Exciton Positions[J]. Chinese journal of luminescence, 2010, 31(2): 167-170.
微腔有机电致发光器件(MOLED)的发光特性直接与微腔的结构相关
可以根据微腔器件的相关计算公式
运用传输矩阵法对MOLED进行模拟设计。本文对微腔总长度
L=λ/2(λ
:中心波长)不变情况下
激子在微腔内不同位置复合发光的电致发光(EL)光谱性能进行模拟并比较。结果表明:发光谱的峰值都在所设计的中心波长520 nm处
半峰全宽(FWHM)都是17 nm
激子处在微腔的中心区域时
峰值强度和积分强度都是最大
这是因为激子此时位于腔内电场的最大值处
偏离此处的两侧逐渐变小。以上结果表明:要制作出高效率的MOLED
必须使激子处于微腔内的最佳位置处。
The light-emitting characteristics of microcavity organic light-emitting device (MOLED) is directly related to the structure of microcavity
MOLED can be simulated by using transfer matrix method according to the related calculation formula of microcavity device. Under the unchangeable circumstances of the total length of microcavity
L=λ/2(λ
is the center wavelength)
this paper simulates and compares with the functions of composite light emitting EL when exciton is in different positions of microcavity. The result shows that peaks of electroluminescence spectrum are all in the 520 nm of designed center wavelength
the full wavelength of half maximum (FWHM) are all 17 nm. The peak intensity and integral intensity are the biggest when exciton is in the central area of microcavity. Because now the exciton is at the maximum position of the electric field which is in the microcavity
both sides became smaller and smaller when exciton deviates from this position. It illustrates that you have to make exciton at the best position of microcavity if you want to create an efficient MOLED.
. Tang C W, Van Slyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12):913-915.
. Heinz Bassler. Injection, transport and recombination of charge carriers in organic light-emitting diodes [J]. Polym. Adv. Technol., 1998, 9 (7):402-418.
. Qu Bo, Cheng Zhijian, Li Fushang, et al. Materials and devices in the field of polyfluorene derivatives organic electro-luminescence [J]. Chin. J. Lumin.(发光学报), 2007, 28 (5):683-692 (in Chinese).
. Wu Jiang, Li Bocheng, Hou Jianhua, et al. Efficient top-emitting organic light-emitting diodes with silver anode modified by O2-plasma [J]. Chin. J. Lumin.(发光学报), 2007, 28 (6):859-863 (in Chinese).
. Li Lu, Yu Junsheng, Li Weizh, et al. Influence of bias voltage and host material on dye doped organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2007, 28 (6):853-858 (in Chinese).
. Zhang Chunyu, Xiao Liguang, Qin Li, et al. Blue color microcavity organic light emitting device [J]. Acta Optica Sinica(光学学报), 2009, 29 (7):1967-1972 (in Chinese).
. Zhang Chunyu, Liu Xingyuan, Ma Fengying, et al. Organic microcavity green color light emitting diode [J]. Acta Optica Sinica (光学学报), 2006, 26 (1):111-115 (in Chinese).
. Xie Zefeng, Yuan Yongbo, Chen Shuming, et al. Study on metal microcavity OLEDs with improved efficiency [J]. Chin. J. Lumin.(发光学报), 2008, 29 (1):37-40 (in Chinese).
. Xiong Zhiyong, Li Hongjian, Wang Junxi, et al. Optical characteristics of flexible microcavity organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2009, 30 (3):337-343 (in Chinese).
. Boo Young Jung, Nam Young Kim, Changhee Lee. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure [J]. Appl. Opt., 2002, 41 (16):3312-3318.
. Deppe D G, Lel C, Lin C C, et al. Spontaneous emission from planar microstrucyures [J]. J. Modern Optics, 1994, 41 (2):325-344.
0
浏览量
126
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构