浏览全部资源
扫码关注微信
枣庄学院 物理与电子工程系,山东 枣庄,277160
纸质出版日期:2009-2-20,
网络出版日期:2009-2-20,
收稿日期:2008-8-25,
修回日期:1900-1-2,
扫 描 看 全 文
梁兰菊. 太赫兹波段三角晶格二维光子晶体的传输特性[J]. 发光学报, 2009,30(1):35-39.
LIANG Lan-ju. Propagation Characteristic of 2D Triangular Lattice Photonic Crystal in THz Range[J]. Chinese Journal of Luminescence, 2009,30(1):35-39.
用平面波展开法研究了太赫兹(THz)波在二维三角晶格光子晶体中的传输特性。数值计算了以硅为背景的空气圆柱构成的二维三角晶格光子晶体的能带结构和态密度
计算表明在介质圆柱半径r=0.47a(a为空气介质柱的晶格常数)出现最大完全光子带隙
带隙宽度为0.070 1 THz;当r=0.49a和r=0.45a时
E偏振和H偏振分别出现最大光子带隙
带隙宽度分别0.102 2
0.192 3 THz。光子晶体能态密度的分布也表明了存在光子带隙的范围。研究结果为THz器件的开发提供了理论依据。
Propagation characteristic of two-dimensional triangular lattice photonic crystals in THz range was studied by using PWM. The band gap structure and density of photon states of two-dimensional triangular lattice photonic crystals constructed from air in Si dielectric matrix was calculated. It was found that when the radius was 0.47<em>a</em>
it can generate maximum absolute photonic band gap with 0.070 1 THz
and it can generate maximum photonic band gap with 0.102 2 and 0.192 3 THz when the radius was 0.49<em>a</em> and 0.45<em>a</em>
respectively. The photonic band structure was also shown by the photonic density of states. This research provides a theoretic basis for the development of THz devices.
太赫兹波光子晶体平面波展开法三角晶格
THz wavephotonic crystalplan wave expansion methodtriangular lattice
. Bingham A, Zhao Y G, Grischkowsky D. THz parallel plate photonic waveguide [J]. Appl. Phys. Lett., 2005, 87 (5):051101-1-3.
. Lin C C, Chen C H, Schneider G J, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides [J]. Opt. Express, 2004, 12 (23):5723-5728.
. Liu H, Yao J, Xu D, et al. Propagation characteristics of two-dimensional photonic crystals in the terahertz range [J]. Appl. Phys. B, 2007, 87 (1):57-63.
. Alireza Hassani, Alexandre Dupuis, Maksim Skorobogatiy. Low loss porous terahertz fibers containing multiple subwavelength holes [J]. Appl. Phys. Lett., 2008, 92 (7):071101-1-3.
. Qi Limei, Yang Ziqiang, Gao Xi, et al. Analysis of two-dimensional photonic band gap structure with a rhombus lattice[J]. Chin. Opt. Lett., 2008, 6 (4):279-281.
. Liu H C, Song C Y, Wasilewski Z R, et al. Coupled electron-phonon modes in optically pumped resonant intersubband lasers [J]. Phys. Rev. Lett., 2003, 90 (7):077402-1-3.
. Chen Qingpeng, Liang Lanju, Yan Xin. Propagation band structure of lattice photonic crystal in THz range [J]. J. Synthetic Crystals (人工晶体学报), 2008, 37 (2):490-493 (in Chinese).
. Liang Lanju, Yan Xin. Propagation characteristics of THz waves in 2D lattice photonic crystal [J]. Chin. J. Quantum Electronics (量子电子学报), 2008, 25 (4):462-466 (in Chinese).
. John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58 (23):2486-2488.
. Yablonvitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58 (20):2059-2061.
. Chen Song, Wang Weibiao, Liang Jingqiu, et al. Two-dimensional photonic crystal microcavities [J]. Chin. J. Lumin. (发光学报), 2007, 28 (1):7-12 (in Chinese).
. Chen Haibo, Gao Yingjun, Hu Sumei. Properties of mirror symetrical photonic crystals of dielectric constant defect layer with imaginary part [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):233-237 (in Chinese).
. Wang Daobin, Hou Shanglin, Ren Guodong, et al. Band structrue of Suguki-phase photonic crystal [J]. Chin. J. Lumin. (发光学报), 2008, 29 (5):885-890 (in Chinese).
. Busch K, John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum [J]. Phys. Rev. Lett., 1999, 83 (5):967-970.
. Kurt Busch, John S. Photonic band gap formation in certain self-organizing systems [J]. Phys. Rev. E, 1998, 58 (3):3896-3908.
. Che Ming, Zhou Yunsong, Wang Fuhe, et al. Density of sates and local density of states of two-dimensional photonic crystals with cylinder scatter in square lattice [J]. Acta Opt. Sin.(光学学报), 2006, 26 (12):1847-1851 (in Chinese).
0
浏览量
50
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构