浏览全部资源
扫码关注微信
1. 电子科技大学, 应用所,四川 成都,610054
2. 中国工程物理研究院, 电子工程研究所,四川 绵阳,621900
3. 四川大学, 电子信息学院,四川 成都,610064
4. 中国科学院, 光电研究所,四川 成都,610209
5. 中国科学院, 上海光学精密机械研究所 上海,201800
6. 中国科学院, 西安光学精密机械研究所,陕西 西安,710119
纸质出版日期:2008-3-20,
收稿日期:2007-8-25,
修回日期:2007-11-24,
扫 描 看 全 文
蔡然, 荣健, 曾岚, 薛蔡, 陈建国, 蔡贵顺, 胡诗杰, 曹捷, 董吉辉, 李晓峰, 胡渝, 林为干. 预失真半导体激光列阵技术[J]. 发光学报, 2008,29(2): 342-352
CAI Ran, RONG Jian, ZENG Lan, XUE Cai, CHEN Jian-guo, CAI Gui-shun, HU Shi-jie, CAO Jie, DONG Ji-hui, LI Xiao-feng, HU Yu, LIN Wei-gan. The Study of the Space-borne Phase-locked Laser Diode Array Technology with Predistortion[J]. Chinese Journal of Luminescence, 2008,29(2): 342-352
蔡然, 荣健, 曾岚, 薛蔡, 陈建国, 蔡贵顺, 胡诗杰, 曹捷, 董吉辉, 李晓峰, 胡渝, 林为干. 预失真半导体激光列阵技术[J]. 发光学报, 2008,29(2): 342-352 DOI:
CAI Ran, RONG Jian, ZENG Lan, XUE Cai, CHEN Jian-guo, CAI Gui-shun, HU Shi-jie, CAO Jie, DONG Ji-hui, LI Xiao-feng, HU Yu, LIN Wei-gan. The Study of the Space-borne Phase-locked Laser Diode Array Technology with Predistortion[J]. Chinese Journal of Luminescence, 2008,29(2): 342-352 DOI:
相干半导体激光列阵体积小、重量轻
输出能量密度高
非常适于用作对光源尺寸要求苛刻的航天激光光源。为避免随航天器在轨运行的半导体列阵经受变化梯度剧烈的恒星、行星、空间低温热沉的交替加热和冷却的影响
以便能够正常工作
采用潜望式结构设计
将列阵置于舱内
列阵向航天器外输出激光必须经由舱外输出反射镜完成。然而
舱外输出反射镜受周围热环境影响和列阵输出激光束照射
会产生随机热变形
导致输出舱外的激光能量发散;并且
舱外输出反射镜面热变形导致镜面法向偏转
使得输出光束产生较大的指向偏转误差
这极大地降低了能够作用于目标之上的激光束的能量密度
严重恶化输出舱外的光束质量。通过理论推导结合ANSYS有限元分析软件和相关实验
在研究清楚相干半导体激光列阵作为航天激光源的构造、其光场与周围热环境共同作用于舱外输出反射镜的规律与特点后
给出了航天预失真半导体激光列阵激光源技术
通过回波法适时测量舱外输出反射镜引起的波前畸变
处理器配合D/A和高压放大器
驱动驱动器
使舱内添加的反射镜预失真成形
适时使列阵输出产生预失真波前畸变
以抵消舱外输出反射镜的热变形对输出舱外的激光束的影响。相关系统运行实验结果显示
此技术使半导体激光列阵能够适应宇航环境
向舱外输出保障质量的激光束。
In active remote sensing
electrooptical countermeasures
wireless optical remote transmitting and so on
the space-borne laser source carried by a space vehicle is indispensable
the function is unique
powerful and irreplaceable. For accomplishing the intended result in astronautical engineering or in aeronautical engineering
it is necessary to make the intended aim
whose size is finite
be irradiated by laser beam emitting from a right space-borne laser source
and the energy density of the laser beam that irradiates the aim must be enough high. Phase-locked laser diode array is small in size and light in weight
it is quite fit for performing the function of high power space-borne laser whose size must be exigent proper. Meanwhile
in space
the space thermal environment will be influenced by star
planet and space heat sink
a space vehicle is heated and cooled by turns
the change in temperature is violent
to avoid being damaged in space
in this paper
a phase-locked laser diode array who acts as the space-borne laser source in a space vehicle is placed inside the space capsule
only is reflected by the extravehicular reflecting mirrors
the laser beam that emits from the phase-locked laser diode array can pass through the outgoing mirror of the space-borne laser source
and then can transmit into space
the structure of the whole space-borne laser source is periscopic
even so
induced by the varied surrounding space thermal environment
and aggravated by the laser beam that the extravehicular reflecting mirror's reflect
the extravehicular reflecting mirrors will deform stochastically
so the output energy of the space-borne laser source is diverged
at the same time
the normal line of each reflecting mirror surface turns due to the reflecting mirror thermal distortion
so corresponding transferred laser beam has a large deflect
therefore the energy density of the laser beam that can be transmitted to the intended aim and then can treat the aim to be detracted greatly
the performance of the space-borne phase-locked laser diode array will suffer seriously. By way of theoretical derivation
finite element analysis and pertinent experiment
this paper presents clear ideas on the configuration of the space-borne laser source whose emitter is just a phase-locked laser diode array
on characteristics of the space thermal environment that can impact the extravehicular reflecting mirrors
on the optoelectrical field distribution of the phase-locked laser diode array who irradiates the extravehicular reflecting mirrors. Then it makes the laws that govern the action of the deformation of the extravehicular reflecting mirror clear. After that
the novel predistortion technology is presented. To perform the proposed technology in the proposed periscopic space-borne laser source
firstly
the wavefront error induced by the deformation of the extravehicular reflecting mirrors is sensed by the special sensing probe by means of the special echo wave method
after processed by the special processor
the controlled quantity for compensating the outgrowth of the deformation of the extravehicular reflecting mirrors can be obtained
with suitable D/A
high voltage amplifier
the actuating mechanism makes the additive reflecting mirror inside the capsule shape correctly in time
so with right predistortion
after it to be done by the additive reflecting mirror
the laser beam that will be reflected by the extravehicular reflecting mirrors won't be deteriorated by the deformation of the extravehicular reflecting mirror
the experiment demonstrates that the proposed technology makes a space-borne laser diode array adapts to the space thermal environment
guarantees the quality of its output laser beam
this is significant for that laser diode array should be employed in space.
相干半导体激光列阵航天激光源宇航环境预失真光束质量
phase-locked laser diode arrayspace-borne laser sourcespace flight environmentpredistortionbeam quality
Apollonov V V,Derzhavin S I,Kislov V I,et al.Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity[J].Quantum Electron,1998,28(3):257-263.
Gao X,Zheng Y,Kan H,et al.Effective suppression of beam divergence for a high-power laser diode bar by an external-cavity technique[J].Opt.Lett.,2004,29(4):361-363.
Romalis M V.Narrowing of high power diode laser arrays using reflection feedback from an etalon[J].Appl.Phys.Lett.,2000,77(8):1080-1081.
Chen Jianguo,Chen Haibo,Yang Hua,et al.General discussion on mode selectivity imposed by external cavity used to phase lock broad stripe diode arrays[J].J.Opt.Commun.,2006,27(3):163-167.
Hassiaoui I,Michel N,Lecomte M,et al.In-phase coherent coupling of tapered lasers in an external Talbot cavity[J].SPIE,2007,64850E.
Apollonov V V,Derzhavin S I,Filonenko V A,et al.High power laser diode array phase-locking[J].SPIE,2000,3889:134-146.
Apollonov V V,Derzhavin S I,Kislov V I,et al.Phase-locking of the 2d structures[J].Opt.Express.,1999,4(1):19-26.
Apollonov V V,Derzhavin S I,Kislov V I,et al.Phase locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configuration in an external Talbot cavity[J].Quantum Electron,1998,28(4):344-346.
Fan Ning,Yang Linhua,Shi Ruiliang.Design of semiconductor laser collimator[J].Spacecraft Environment Enginee-ring,2006,23(1):51-55.
Takeuti Y,Zaima S,Noda N.Thermal stresses problems in industry 1:On thermoelastic distortion in machine metals[J].Thermal Stress,1978,1(2):199-210.
Yang Xucan,Jin Jiansan.Mechanics of Elasticity[M].Beijing:Higher Education Press,1987.
Geyl R,Cayrel M.Low CTE glass,SiC and beryllium for lightweight mirror substrates[C].SPIE,Jena,Germany,2005
Tanaka C T,Webb K.Chemical vapour composite silicon carbide for space telescopes[C].SPIE Orlando,FL,USA,2006.
Murakami H.Japanese infrared survey mission IRIS(ASTRO-F)[J].SPIE,1998,3356:471-477.
LubarskY S Khimitch Y P.Light weighted mirrors for space tclcscopcs[J].SPIE,1994,2199:938-944.
Petrovsky g T,Tolstoy M N,Ljubarsky S V,et al.A 2.7-meter-diameter silicon carbide primary mirror for the SOFIA telescope[J].SPIE,1994,2199:263-270.
Castel D,Calvel B,Lamy P,et al.The monolithic SiC telescope of the OSIRIS narrow angle camera for the cometary mission ROSETTAk[J].SPIE,1999,3785:56-65.
Shih C J,Ezis A.Application of hot-pressed silicon carbidc to large high-precision optical structures[J].SPIE,1995,2543:24-37.
0
浏览量
56
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构