

浏览全部资源
扫码关注微信
1.皖南医学院 医学影像学院, 安徽 芜湖 241002
2.中央民族大学 理学院, 北京 100081
Received:07 May 2025,
Revised:2025-05-19,
Published:25 October 2025
移动端阅览
郭兰英,陈妍,彭洪尚.基于三线态-三线态湮灭的上转换纳米粒子制备及性能研究[J].发光学报,2025,46(10):1884-1895.
GUO Lanying,CHEN Yan,PENG Hongshang.Preparation and Performance Research of Upconversion Nanoparticles Based on Triplet-Triplet Annihilation[J].Chinese Journal of Luminescence,2025,46(10):1884-1895.
郭兰英,陈妍,彭洪尚.基于三线态-三线态湮灭的上转换纳米粒子制备及性能研究[J].发光学报,2025,46(10):1884-1895. DOI: 10.37188/CJL.20250143. CSTR: 32170.14.CJL.20250143.
GUO Lanying,CHEN Yan,PENG Hongshang.Preparation and Performance Research of Upconversion Nanoparticles Based on Triplet-Triplet Annihilation[J].Chinese Journal of Luminescence,2025,46(10):1884-1895. DOI: 10.37188/CJL.20250143. CSTR: 32170.14.CJL.20250143.
为了解决传统三线态-三线态湮灭(TTA)上转换体系的水分散性差、氧敏感性强及光稳定性不足等瓶颈问题,开发了基于中空介孔二氧化硅纳米粒子(HMSNs)的固态上转换探针(TTA-UCNPs)。通过反相微乳液法和选择性刻蚀技术制备了HMSNs载体,利用其空腔限域效应共负载铂八乙基卟啉(PtOEP)敏化剂与9,10-二联苯蒽(DPA)湮灭剂,并通过酰胺反应进行聚乙二醇-叶酸(PEG-FA)双功能化修饰以提升生物相容性与靶向性。实验结果表明,HMSNs的纳米限域效应显著抑制氧气猝灭(氧敏感性降至6.4%,较有机相体系降低约10.3倍);THF/H
2
O混合溶剂洗涤优化分子排布后,441 nm处峰值上转换荧光强度提升约3.5倍;体系在低激发功率下(阈值~5 mW·cm
-2
)呈现非线性发光特性,且光稳定性优异;细胞实验证实其低毒性(250 μg·mL
-1
时,HepG2细胞存活率
>
84%)及高效胞内靶向成像能力。本研究为构建高效稳定的低功率激发生物成像探针提供了新策略。
This study aims to solve the bottleneck problems of the traditional triplet triplet annihilation (TTA) upconversion system, such as poor water dispersion, strong oxygen sensitivity and insufficient photostability, an
d develop solid-state upconversion probes (TTA-UNCPs) based on hollow mesoporous silica nanoparticles (HMSNs). HMSNs carriers were prepared by reverse microemulsion method and selective etching technology. Platinum octaethyl porphyrin (PtOEP) sensitizer and 9,10-diphenylanthracene (DPA) annihilator were co-loaded on the HMSNs carriers using the cavity confinement effect, and polyethylene glycol folate (PEG-FA) bifunctional modification was carried out by amide reaction to improve the biocompatibility and targeting. The experimental results show that the nano confinement effect of HMSNs significantly inhibits oxygen quenching (oxygen sensitivity decreases to 6.4%, which is about 10.3 times lower than that of organic phase system). After washing the optimized molecular arrangement with THF/H
2
O mixed solvent, the peak upconversion fluorescence intensity at 441 nm increased by about 3.5 times. At low excitation power (threshold ~5 MW·cm
-2
), the system exhibits nonlinear luminescence characteristics and excellent optical stability. Cell experiments confirmed its low toxicity (HepG2 cell survival rate
>
84% at 250 μg·mL
-1
) and high-efficiency intracellular targeting imaging ability. This study provides a new strategy for the construction of efficient and stable low-power excitation biological imaging probe.
谭文乐 , 俞越 , 胡德华 , 等 . 有机发光二极管蓝光材料研究进展 [J]. 发光学报 , 2023 , 44 ( 1 ): 1 - 11 . doi: 10.37188/CJL.20220328 http://dx.doi.org/10.37188/CJL.20220328
TAN W L , YU Y , HU D H , et al . Recent progress of blue-light emitting materials for organic light-emitting diodes [J]. Chin. J. Lumin. , 2023 , 44 ( 1 ): 1 - 11 . (in Chinese) . doi: 10.37188/CJL.20220328 http://dx.doi.org/10.37188/CJL.20220328
AUZEL F . Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev. , 2004 , 104 ( 1 ): 139 - 174 . doi: 10.1021/cr020357g http://dx.doi.org/10.1021/cr020357g
LIN W Y , LI J Y , FENG H J , et al . Recent advances in triplet-triplet annihilation upconversion for bioimaging and biosensing [J]. J. Anal. Test. , 2023 , 7 ( 4 ): 327 - 344 . doi: 10.1007/s41664-023-00264-0 http://dx.doi.org/10.1007/s41664-023-00264-0
SUN C N , GRADZIELSKI M . Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors [J]. Adv. Colloid Interface Sci. , 2022 , 300 : 102579 . doi: 10.1016/j.cis.2021.102579 http://dx.doi.org/10.1016/j.cis.2021.102579
李雅珍 , 王喜龙 , 田跃 , 等 . 多光子成像用上转换纳米粒子的单颗粒研究与应用进展 [J]. 发光学报 , 2023 , 44 ( 11 ): 2041 - 2056 . doi: 10.37188/CJL.20230126 http://dx.doi.org/10.37188/CJL.20230126
LI Y Z , WANG X L , TIAN Y , et al . Current research and application development of single upconverting nanoparticles as multiphoton probes [J]. Chin. J. Lumin. , 2023 , 44 ( 11 ): 2041 - 2056 . (in Chinese) . doi: 10.37188/CJL.20230126 http://dx.doi.org/10.37188/CJL.20230126
宋宏伟 . 稀土掺杂氧化物纳米发光材料研究 [J]. 发光学报 , 2008 , 29 ( 6 ): 921 - 936 .
SONG H W . Recent developments on rare earth doped oxide nanocrystals [J]. Chin. J. Lumin. , 2008 , 29 ( 6 ): 921 - 936 . (in Chinese)
YANG M , GONG H J , YANG D , et al . Research progress on rare earth up-conversion and near-infrared Ⅱ luminescence in biological applications [J]. Chin. Chem. Lett. , 2024 , 35 ( 2 ): 108468 . doi: 10.1016/j.cclet.2023.108468 http://dx.doi.org/10.1016/j.cclet.2023.108468
贾恒 , 冯晓锐 , 李大光 , 等 . 正交激发发射上转换纳米材料的设计、制备与应用 [J]. 中国光学(中英文) , 2023 , 16 ( 1 ): 76 - 93 . doi: 10.37188/co.2022-0134 http://dx.doi.org/10.37188/co.2022-0134
JIA H , FENG X R , LI D G , et al . Design, preparation and application of orthogonal excitation-emission upconversion nanomaterials [J]. Chin. Opt. , 2023 , 16 ( 1 ): 76 - 93 . (in Chinese) . doi: 10.37188/co.2022-0134 http://dx.doi.org/10.37188/co.2022-0134
WEI L L , YANG C , WU W H . Optimizing TTA-UC performance by chemically tuning sensitizers and orderly organizing sensitizers and annihilators [J]. Chem. Commun. , 2025 , 61 ( 40 ): 7221 - 7235 . doi: 10.1039/d5cc00476d http://dx.doi.org/10.1039/d5cc00476d
BHARMORIA P , BILDIRIR H , MOTH-POULSEN K . Triplet-triplet annihilation based near infrared to visible molecular photon upconversion [J]. Chem. Soc. Rev. , 2020 , 49 ( 18 ): 6529 - 6554 . doi: 10.1039/d0cs00257g http://dx.doi.org/10.1039/d0cs00257g
NAIMOVIČIUS L , PUN A B . Design and optimization of triplet-triplet annihilation upconversion annihilators [J]. Trends Chem. , 2025 , 7 ( 4 ): 171 - 174 . doi: 10.1016/j.trechm.2025.02.002 http://dx.doi.org/10.1016/j.trechm.2025.02.002
LIU Q , YANG T S , FENG W , et al . Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo [J]. Am J. Chem. Soc. , 2012 , 134 ( 11 ): 5390 - 5397 . doi: 10.1021/ja3003638 http://dx.doi.org/10.1021/ja3003638
YANAI N , SUZUKI K , OGAWA T , et al . Absolute method to certify quantum yields of photon upconversion via triplet-triplet annihilation [J]. J. Phys. Chem. A , 2019 , 123 ( 46 ): 10197 - 10203 . doi: 10.1021/acs.jpca.9b08636 http://dx.doi.org/10.1021/acs.jpca.9b08636
RAIŠYS S , JURŠĖNAS S , SIMON Y C , et al . Enhancement of triplet-sensitized upconversion in rigid polymers via singlet exciton sink approach [J]. Chem. Sci. , 2018 , 9 ( 33 ): 6796 - 6802 . doi: 10.1039/c8sc02151a http://dx.doi.org/10.1039/c8sc02151a
WEI L L , YANG C , WU W H . Recent advances of triplet-triplet annihilation upconversion in solvent-free solid materials [J]. Mater. Chem. Front. , 2023 , 7 ( 16 ): 3194 - 3208 . doi: 10.1039/d3qm00495c http://dx.doi.org/10.1039/d3qm00495c
CHEN J , WANG P Y , LIU J B , et al . Achieving efficient TTA-UC both in organogels and solvent-free dry gels by co-assembling annihilator with gelators [J]. Chin. J. Chem. , 2025 , 43 ( 16 ): 2021 - 2028 . doi: 10.1002/cjoc.70073 http://dx.doi.org/10.1002/cjoc.70073
SCHLOEMER T , NARAYANAN P , ZHOU Q , et al . Nanoengineering triplet-triplet annihilation upconversion: from materials to real-world applications [J]. ACS Nano , 2023 , 17 ( 4 ): 3259 - 3288 . doi: 10.1021/acsnano.3c00543 http://dx.doi.org/10.1021/acsnano.3c00543
KLIMEZAK M , CHAUD J , BRION A , et al . Triplet-triplet annihilation upconversion-based photolysis: applications in photopharmacology [J]. Adv. Healthcare Mater. , 2024 , 13 ( 19 ): 2400354 . doi: 10.1002/adhm.202400354 http://dx.doi.org/10.1002/adhm.202400354
PRABHAKARAN A , JHA K K , SIA R C E , et al . Triplet-triplet annihilation upconverting liposomes: mechanistic insights into the role of membranes in two-dimensional TTA-UC [J]. ACS Appl. Mater. Interfaces , 2024 , 16 ( 22 ): 29324 - 29337 . doi: 10.1021/acsami.4c00990 http://dx.doi.org/10.1021/acsami.4c00990
BRION A , CHAUD J , KLIMEZAK M , et al . Photoactivatable liposomes for blue to deep red light-activated surface drug release: application to controlled delivery of the antitumoral drug melphalan [J]. Bioconjugate Chem. , 2023 , 34 ( 7 ): 1304 - 1315 . doi: 10.1021/acs.bioconjchem.3c00197 http://dx.doi.org/10.1021/acs.bioconjchem.3c00197
MONGUZZI A , FRIGOLI M , LARPENT C , et al . Low-power-photon up-conversion in dual-dye-loaded polymer nanoparticles [J]. Adv. Funct. Mater. , 2012 , 22 ( 1 ): 139 - 143 . doi: 10.1002/adfm.201101709 http://dx.doi.org/10.1002/adfm.201101709
CHOI H E , PARK J M , JEONG W Y , et al . Water-dispersible and biocompatible polymer-based organic upconversion nanoparticles for transdermal delivery [J]. Biomater. Res. , 2024 , 28 : 0106 . doi: 10.34133/bmr.0106 http://dx.doi.org/10.34133/bmr.0106
GONG L S , CHEN L X , LIN Q J , et al . Nanoscale metal-organic frameworks as a photoluminescent platform for bioimaging and biosensing applications [J]. Small , 2024 , 20 ( 45 ): 2402641 . doi: 10.1002/smll.202402641 http://dx.doi.org/10.1002/smll.202402641
PARK J , XU M , LI F Y , et al . 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging [J]. J. Am. Chem. Soc. , 2018 , 140 ( 16 ): 5493 - 5499 . doi: 10.1021/jacs.8b01613 http://dx.doi.org/10.1021/jacs.8b01613
ROY I , GOSWAMI S , YOUNG R M , et al . Photon upconversion in a glowing metal-organic framework [J]. J. Am. Chem. Soc. , 2021 , 143 ( 13 ): 5053 - 5059 . doi: 10.1021/jacs.1c00298 http://dx.doi.org/10.1021/jacs.1c00298
ZHANG Q Y , LUO G W , HU R , et al . Crystalline hydrogen-bonded organic framework for air-tolerant triplet-triplet annihilation upconversion [J]. Chem. Commun. , 2024 , 60 ( 33 ): 4475 - 4478 . doi: 10.1039/d4cc00742e http://dx.doi.org/10.1039/d4cc00742e
MANZANO M , VALLET-REGÍ M . Mesoporous silica nanoparticles for drug delivery [J]. Adv. Funct. Mater. , 2020 , 30 ( 2 ): 1902634 . doi: 10.1002/adfm.201902634 http://dx.doi.org/10.1002/adfm.201902634
YANG Z S , NING Y Y , YIN H Y , et al . Lutetium (Ⅲ) porphyrinoids as effective triplet photosensitizers for photon upconversion based on triplet-triplet annihilation (TTA) [J]. Inorg. Chem. Front. , 2018 , 5 ( 9 ): 2291 - 2299 . doi: 10.1039/c8qi00477c http://dx.doi.org/10.1039/c8qi00477c
MASSARO G , GENTILI P L , AMBROGI V , et al . Triplet-triplet annihilation based upconversion in silica matrices [J]. Micropor. Mesopor. Mater. , 2017 , 246 : 120 - 129 . doi: 10.1016/j.micromeso.2017.03.008 http://dx.doi.org/10.1016/j.micromeso.2017.03.008
ASKES S H C , LEEUWENBURGH V C , POMP W , et al . Water-dispersible silica-coated upconverting liposomes: can a thin silica layer protect TTA-UC against oxygen quenching? [J]. ACS Biomater. Sci. Eng. , 2017 , 3 ( 3 ): 322 - 334 . doi: 10.1021/acsbiomaterials.6b00678 http://dx.doi.org/10.1021/acsbiomaterials.6b00678
GUO H Q , ZHAO X , DUAN Y P , et al . Hollow mesoporous silica nanoparticles for drug formulation and delivery: opportunities for cancer therapy [J]. Colloids Surf. B , 2025 , 249 : 114534 . doi: 10.1016/j.colsurfb.2025.114534 http://dx.doi.org/10.1016/j.colsurfb.2025.114534
LEE H , LEE M S , UJI M , et al . Nanoencapsulated phase-change materials: versatile and air-tolerant platforms for triplet-triplet annihilation upconversion [J]. ACS Appl. Mater. Interfaces , 2022 , 14 ( 3 ): 4132 - 4143 . doi: 10.1021/acsami.1c21080 http://dx.doi.org/10.1021/acsami.1c21080
GUO L Y , PING J T , QIN J L , et al . A comprehensive study of drug loading in hollow mesoporous silica nanoparticles: impacting factors and loading efficiency [J]. Nanomaterials , 2021 , 11 ( 5 ): 1293 . doi: 10.3390/nano11051293 http://dx.doi.org/10.3390/nano11051293
GUO L Y , XIA Q S , QIN J L , et al . Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy [J]. J. Colloid Interface Sci. , 2022 , 616 : 81 - 92 . doi: 10.1016/j.jcis.2022.02.046 http://dx.doi.org/10.1016/j.jcis.2022.02.046
GOUDARZI H , KOUTSOKERAS L , BALAWI A H , et al . Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications [J]. Chem. Sci. , 2023 , 14 ( 8 ): 2009 - 2023 . doi: 10.1039/d2sc06426j http://dx.doi.org/10.1039/d2sc06426j
YANG H Z , GUO S W , JIN B X , et al . Versatile, stable, and air-tolerant triplet-triplet annihilation upconversion block copolymer micelles [J]. Polym. Chem. , 2022 , 13 ( 34 ): 4887 - 4894 . doi: 10.1039/d2py00596d http://dx.doi.org/10.1039/d2py00596d
RAIŠYS S , JURŠĖNAS S , KAZLAUSKAS K . Boost in solid-state photon upconversion efficiency through combined approach of melt-processing and purification [J]. Sol. RRL , 2022 , 6 ( 6 ): 2100873 . doi: 10.1002/solr.202100873 http://dx.doi.org/10.1002/solr.202100873
STANCIU S T , RAIŠYS S , KAZLAUSKAS K , et al . A rationally designed singlet sink for glassy polymeric photon upconverting films [J]. J. Mater. Chem. C , 2024 , 12 ( 22 ): 8087 - 8097 . doi: 10.1039/d3tc04619b http://dx.doi.org/10.1039/d3tc04619b
VEPRIS O , EICH C , FENG Y S , et al . Optically coupled PtOEP and DPA molecules encapsulated into PLGA-nanoparticles for cancer bioimaging [J]. Biomedicines , 2022 , 10 ( 5 ): 1070 . doi: 10.3390/biomedicines10051070 http://dx.doi.org/10.3390/biomedicines10051070
GUO L Y , PENG H S , SHEN R Y , et al . Iridium-based dual-functional nanoparticles for far-red imaging and photodynamic therapy [J]. Nano Biomed. Eng. , 2017 , 9 ( 1 ): 1 - 8 .
郭兰英(1988 -) , 女 , 河南商丘人 , 博士 , 讲师 , 2021年于北京交通大学获得博士学位 , 主要从事发光纳米材料和肿瘤诊疗一体化的研究 。
0
Views
11
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621