浏览全部资源
扫码关注微信
1.深圳北理莫斯科大学 材料科学系, 广东 深圳 518172
2.罗蒙诺索夫莫斯科国立大学 材料科学系, 俄罗斯 莫斯科 119991
3.北京大学深圳研究生院 新材料学院, 广东 深圳 518055
Published:25 December 2024,
Received:23 September 2024,
Revised:09 October 2024,
移动端阅览
周奥伟,朱亚楠,郭志鹏等.N/C̿ O体系窄带蓝光MR-TADF分子的结构筛选与电子效应[J].发光学报,2024,45(12):2045-2053.
ZHOU Aowei,ZHU Yanan,GUO Zhipeng,et al.Molecules Screening and Electronic Effects of N/C̿ O-based MR-TADF Materials with Narrow Blue Emission[J].Chinese Journal of Luminescence,2024,45(12):2045-2053.
周奥伟,朱亚楠,郭志鹏等.N/C̿ O体系窄带蓝光MR-TADF分子的结构筛选与电子效应[J].发光学报,2024,45(12):2045-2053. DOI: 10.37188/CJL.20240222.
ZHOU Aowei,ZHU Yanan,GUO Zhipeng,et al.Molecules Screening and Electronic Effects of N/C̿ O-based MR-TADF Materials with Narrow Blue Emission[J].Chinese Journal of Luminescence,2024,45(12):2045-2053. DOI: 10.37188/CJL.20240222.
基于高色纯度的优势多重共振热活化延迟荧光(MR-TADF)材料因其在高精度显示中的潜在价值而备受关注。本文以12,12-二甲基-4H-苯并[9,1]喹啉并[3,4,5,6,7-defg]吖啶-4,8(12H)-二酮(DQAO)为分子母核,通过引入电子性质不同的侧链基团并对其进行结构筛选和荧光性能评估,设计并评测了一组兼具窄谱带和深蓝光发射的潜力分子,提出了基于该类N/C
<math id="M3"><mover><mrow><mo>̿</mo></mrow><mrow><mtext> </mtext></mrow></mover></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71002698&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71002700&type=
3.72533321
O体系的高性能发光材料的设计通式。该研究运用量子化学方法全面评估了74个目标分子的三重态-单重态能隙、荧光振子强度及发射光谱特性,通过基态-激发态结构重组能对发射光谱半峰宽(FWHM)进行有效近似,发现N对位取代电子受体有利于提高振子强度与降低重组能,而电子供体则倾向于降低三重态-单重态能隙。研究结果表明,调控N对位取代基元的电子性质将在显著降低MR-TADF分子的三重态-单重态能隙的同时,有效提升其振子强度,并得到理想的发射波长,从而实现高性能窄带发射特性。本研究不仅为MR-TADF分子的高效设计提供了新的分子设计思路和有效结构数据集,还为基于N对位优势和修饰基电子性质进一步优化荧光材料性能奠定了坚实的理论基础。
Based on the advantages of high color purity, multi-resonance thermally a
ctivated delayed fluorescence (MR-TADF) materials have attracted significant attention for their potential value in high-precision displays. This work took 12,12-dimethyl-4H-benzo[9,1]quinolino[3,4,5,6,7-defg]acridine-4,8(12H)-dione (DQAO) as the core skeleton, introducing sidechain groups with different electronic properties and performing virtual screening and fluorescence performance evaluation on molecular structures. A set of potential molecules with both narrow bands and deep blue emission were designed, and strategy for high-performance luminescent materials based on N/C
<math id="M4"><mover><mrow><mo>̿</mo></mrow><mrow><mtext> </mtext></mrow></mover></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71002709&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71002703&type=
3.72533321
O was proposed. This study comprehensively evaluated the emission characteristics such as triplet-singlet energy splitting (Δ
E
ST
), oscillator strength, and wavelength of over 70 candidates
via
quantum chemical methods. It was found that electron acceptors substituted at the N-position are conducive to enhancing oscillator strength and reducing reorganization energy (
E
λ
), which estimates the full width at half maxima (FWHM) of the emission, while electron donors tend to reduce the Δ
E
ST
. The results of this study indicate that regulating the electronic properties of N-position substituents will significantly reduce the Δ
E
ST
of MR-TADF molecules, effectively enhance their oscillator strength, and achieve the desired emission waveleng
th, thereby realizing high-performance narrow-band emission characteristics. This study not only provides new molecular design ideas and effective structural data sets for the efficient design of MR-TADF molecules but also lays the theoretical foundation for further optimizing the performance of fluorescent materials based on the advantages of the N-position and the electronic properties of modifying groups.
荧光发射半峰宽电子效应DQAO分子重组能虚拟筛选
full width at half maximadonor-acceptorreorganization energyvirtual screening
YUAN Y, TANG X, DU X Y, et al. The design of fused amine/carbonyl system for efficient thermally activated delayed fluorescence: novel multiple resonance core and electron acceptor [J]. Adv. Opt. Mater., 2019, 7(7): 1801536. doi: 10.1002/adom.201801536http://dx.doi.org/10.1002/adom.201801536
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
ZHANG Q S, LI J, SHIZU K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes [J]. J. Am. Chem. Soc., 2012, 134(36): 14706-14709. doi: 10.1021/ja306538whttp://dx.doi.org/10.1021/ja306538w
GODUMALA M, CHOI S, CHO M J, et al. Thermally activated delayed fluorescence blue dopants and hosts: from the design strategy to organic light-emitting diode applications [J]. J. Mater. Chem. C, 2016, 4(48): 11355-11381. doi: 10.1039/C6TC90213Hhttp://dx.doi.org/10.1039/C6TC90213H
NAKANOTANI H, TSUCHIYA Y, ADACHI C. Thermally-activated delayed fluorescence for light-emitting devices [J]. Chem. Lett., 2021, 50(5): 938-948. doi: 10.1246/cl.200915http://dx.doi.org/10.1246/cl.200915
MATSUO K, YASUDA T. Enhancing thermally activated delayed fluorescence characteristics by intramolecular B-N coordination in a phenylpyridine-containing donor-acceptor π-system [J]. Chem. Commun., 2017, 53(62): 8723-8726. doi: 10.1039/c7cc04875khttp://dx.doi.org/10.1039/c7cc04875k
谭文乐, 俞越, 胡德华, 等. 有机发光二极管蓝光材料研究进展 [J]. 发光学报, 2023, 44(1): 1-11. doi: 10.37188/CJL.20220328http://dx.doi.org/10.37188/CJL.20220328
TAN W L, YU Y, HU D H, et al. Recent progress of blue-light emitting materials for organic light-emitting diodes [J]. Chin. J. Lumin., 2023, 44(1): 1-11. (in Chinese). doi: 10.37188/CJL.20220328http://dx.doi.org/10.37188/CJL.20220328
ZHANG Y L, RAN Q, WANG Q, et al. High-efficiency red organic light-emitting diodes with external quantum efficiency close to 30% based on a novel thermally activated delayed fluorescence emitter [J]. Adv. Mater., 2019, 31(42): 1902368. doi: 10.1002/adma.201902368http://dx.doi.org/10.1002/adma.201902368
JAYAKUMAR J, WU T L, HUANG M J, et al. Pyridine-carbonitrile-carbazole-based delayed fluorescence materials with highly congested structures and excellent OLED performance [J]. ACS Appl. Mater. Interfaces, 2019, 11(23): 21042-21048. doi: 10.1021/acsami.9b04664http://dx.doi.org/10.1021/acsami.9b04664
HSIEH C M, WU T L, JAYAKUMAR J, et al. Diboron-based delayed fluorescent emitters with orange-to-red emission and superior organic light-emitting diode efficiency [J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23199-23206. doi: 10.1021/acsami.0c03711http://dx.doi.org/10.1021/acsami.0c03711
WU C, LIU W Q, LI K, et al. Face-to-face orientation of quasiplanar donor and acceptor enables highly efficient intramolecular exciplex fluorescence [J]. Angew. Chem. Int. Ed., 2021, 60(8): 3994-3998. doi: 10.1002/anie.202013051http://dx.doi.org/10.1002/anie.202013051
TENG J M, WANG Y F, CHEN C F. Recent progress of narrowband TADF emitters and their applications in OLEDs [J]. J. Mater. Chem. C, 2020, 8(33): 11340-11353. doi: 10.1039/d0tc02682dhttp://dx.doi.org/10.1039/d0tc02682d
HIRAI H, NAKAJIMA K, NAKATSUKA S, et al. One-step borylation of 1,3-diaryloxybenzenes towards efficient materials for organic light-emitting diodes [J]. Angew. Chem., 2015, 127(46): 13785-13789. doi: 10.1002/ange.201506335http://dx.doi.org/10.1002/ange.201506335
BALDO M A, O'BRIEN D F, THOMPSON M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J] Phys. Rev. B, 1999, 60(20): 14422. doi: 10.1103/physrevb.60.14422http://dx.doi.org/10.1103/physrevb.60.14422
KIM H J, YASUDA T. Narrowband emissive thermally activated delayed fluorescence materials [J]. Adv. Opt. Mater., 2022, 10(22): 2201714. doi: 10.1002/adom.202201714http://dx.doi.org/10.1002/adom.202201714
HATAKEYAMA T, SHIREN K, NAKAJIMA K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect [J]. Adv. Mater., 2016, 28(14): 2777-2781. doi: 10.1002/adma.201505491http://dx.doi.org/10.1002/adma.201505491
TANKELEVIČIŪTĖ E, SAMUEL I D W, ZYSMAN-COLMAN E. The blue problem: OLED stability and degradation mechanisms [J]. J. Phys. Chem. Lett., 2024, 15(4): 1034-1047. doi: 10.1021/acs.jpclett.3c03317http://dx.doi.org/10.1021/acs.jpclett.3c03317
HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres [J]. Proc. Roy. Soc. A, 1950, 204(1078): 406-423.
FUJIHASHI Y, HIGASHI M, ISHIZAKI A. Intramolecular vibrations complement the robustness of primary charge separation in a dimer model of the photosystem Ⅱ reaction center [J]. J. Phys. Chem. Lett., 2018, 9(17): 4921-4929. doi: 10.1021/acs.jpclett.8b02119http://dx.doi.org/10.1021/acs.jpclett.8b02119
TONG G S M, CHAN K T, CHANG X Y, et al. Theoretical studies on the photophysical properties of luminescent pincer gold(Ⅲ) arylacetylide complexes: the role of π-conjugation at the C-deprotonated[C^N^C] ligand [J]. Chem. Sci., 2015, 6(5): 3026-3037. doi: 10.1039/c4sc03697bhttp://dx.doi.org/10.1039/c4sc03697b
YOST S R, LEE J, WILSON M W B, et al. A transferable model for singlet-fission kinetics [J]. Nat. Chem., 2014, 6(6): 492-497. doi: 10.1038/nchem.1945http://dx.doi.org/10.1038/nchem.1945
SHUAI Z G, PENG Q. Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology [J]. Nat. Sci. Rev., 2017, 4(2): 224-239. doi: 10.1093/nsr/nww024http://dx.doi.org/10.1093/nsr/nww024
BARYSHNIKOV G, MINAEV B, ÅGREN H. Theory and calculation of the phosphorescence phenomenon [J]. Chem. Rev., 2017, 117(9): 6500-6537. doi: 10.1021/acs.chemrev.7b00060http://dx.doi.org/10.1021/acs.chemrev.7b00060
XU Y, HAFEEZ H, SEIBERT J, et al. [2.2]paracyclophane-substituted chiral multiresonant thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes [J]. Adv. Funct. Mater., 2024, 34(47): 2402036. doi: 10.1002/adfm.202470279http://dx.doi.org/10.1002/adfm.202470279
ESCUDERO D, JACQUEMIN D. Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective [J]. Dalton Trans., 2015, 44(18): 8346-8355. doi: 10.1039/c4dt03804ehttp://dx.doi.org/10.1039/c4dt03804e
ZOU S N, PENG C C, YANG S Y, et al. Fully bridged triphenylamine derivatives as color-tunable thermally activated delayed fluorescence emitters [J]. Org. Lett., 2021, 23(3): 958-962. doi: 10.1021/acs.orglett.0c04159http://dx.doi.org/10.1021/acs.orglett.0c04159
SIEFFERT N, WIPFF G. Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations [J]. Dalton Trans., 2015, 44(6): 2623-2638. doi: 10.1039/c4dt02443ehttp://dx.doi.org/10.1039/c4dt02443e
WANG T, GUPTA A K, CORDES D B, et al. Reducing efficiency roll-off in multi-resonant thermally activated delayed fluorescent OLEDs through modulation of the energy of the T2 state [J]. Adv. Opt. Mater., 2023, 11(10): 2300114. doi: 10.1002/adom.202300114http://dx.doi.org/10.1002/adom.202300114
LIU J F, ZOU S N, CHEN X, et al. Isomeric thermally activated delayed fluorescence emitters based on a quinolino[3,2,1-de]acridine-5,9-dione multiple resonance core and carbazole substituent [J]. Mater. Chem. Front., 2022, 6(7): 966-972. doi: 10.1039/d1qm01588ehttp://dx.doi.org/10.1039/d1qm01588e
YANG S Y, ZOU S N, KONG F C, et al. A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a hetero-helicene structure [J]. Chem. Commun., 2021, 57(84): 11041-11044. doi: 10.1039/d1cc04405bhttp://dx.doi.org/10.1039/d1cc04405b
WU S, LI W B, YOSHIDA K, et al. Excited-state modulation in donor-substituted multiresonant thermally activated delayed fluorescence emitters [J]. ACS Appl. Mater. Interfaces, 2022, 14(19): 22341-22352. doi: 10.1021/acsami.2c02756http://dx.doi.org/10.1021/acsami.2c02756
QIU X, TIAN G J, LIN C W, et al. Narrowband emission from organic fluorescent emitters with dominant low-frequency vibronic coupling [J]. Adv. Opt. Mater., 2021, 9(4): 2001845. doi: 10.1002/adom.202001845http://dx.doi.org/10.1002/adom.202001845
ZHANG Q S, TSANG D, KUWABARA H, et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters [J]. Adv. Mater., 2015, 27(12): 2096-2100. doi: 10.1002/adma.201405474http://dx.doi.org/10.1002/adma.201405474
DI D W, ROMANOV A S, YANG L, et al. High-performance light-emitting diodes based on carbene-metal-amides [J]. Science, 2017, 356(6334): 159-163. doi: 10.1126/science.aah4345http://dx.doi.org/10.1126/science.aah4345
CHEN L, CAI J H, YU Y J, et al. Narrowband blue emitter based on fused nitrogen/carbonyl combination with external quantum efficiency approaching 30% [J]. Sci. China Chem., 2024, 67(1): 351-359. doi: 10.1007/s11426-023-1669-9http://dx.doi.org/10.1007/s11426-023-1669-9
LU T, CHEN F W. Multiwfn: a multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33(5): 580-592. doi: 10.1002/jcc.22885http://dx.doi.org/10.1002/jcc.22885
HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. J. Mol. Graph., 1996, 14(1): 33-38. doi: 10.1016/0263-7855(96)00018-5http://dx.doi.org/10.1016/0263-7855(96)00018-5
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution