1.稀有金属分离与综合利用国家重点实验室, 广东省稀土开发及应用研究重点实验室, 广东省科学院资源利用与稀土开发研究所, 广东 广州 510651
扫 描 看 全 文
林利添.稀土离子的多格位占据及能量传递[J].发光学报,
Lin Litian.Multi-Site Occupations and Energy Transfers of Rare-Earth Ions[J].Chinese Journal of Luminescence,
林利添.稀土离子的多格位占据及能量传递[J].发光学报, DOI:10.37188/CJL.20230227
Lin Litian.Multi-Site Occupations and Energy Transfers of Rare-Earth Ions[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230227
多格位占据及其能量传递普遍存在于稀土发光材料的各个领域,且具有重要的科学及现实意义。Ce,3+,的4f–5d和Eu,3+,的4f–4f跃迁代表了稀土离子两种典型的电子跃迁类型,我们以Ce,3+,或Eu,3+,分别激活的E(δ)⁃Gd,2,Si,2,O,7,(,Pnma,)、G-La,2,Si,2,O,7,(,P,2,1,/,n,)和F-Eu,2,Si,2,O,7,(,P,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49335414&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49335413&type=,1.60866666,2.70933342,)为代表案例,讨论和思考稀土离子的多格位占据及其非辐射能量传递,重点在于阐述晶体结构、样品相纯度、掺杂浓度、光谱测试、格位间能量传递和光谱分辨率等须关注的事项。在稀土离子激活的发光材料研究中,我们既须考量材料晶体结构与光谱的自洽,也要从光谱及发光衰减动力学对格位间能量传递(包括传出能量和接收能量)进行分析。希望这些内容在实验及表征上对刚接触相关领域的读者有所启发。
The multi-site occupations and the energy transfers are ubiquitous in various fields of rare-earth ions activated luminescence materials and have important scientific and practical significance. The Ce,3+, 4f–5d and the Eu,3+, 4f–4f transitions represent two typical electronic transition types of rare-earth ions. We take Ce,3+,/Eu,3+,-activated E(δ)-Gd,2,Si,2,O,7, (,Pnma,), G-La,2,Si,2,O,7, (,P,2,1,/,n,), and F-Eu,2,Si,2,O,7, (,P,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49335416&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49335415&type=,1.60866666,2.70933342,) as the representative cases to discuss and revisit the multi-site occupations and the non-radiative energy transfers, focusing on the crystal structure, the phase purity of samples, the doping concentration, the spectral characterization, the energy transfer between lattice sites, and the spectral resolution. In the studies of luminescence materials activated by rare-earth ions, we must not only consider the self-consistency of the materials’ crystal structures and their spectra, but also analyze the energy transfers (including the outgoing energy and the receiving energy) between lattice sites from the spectra and the luminescence decay dynamics. We hope that these contributions could inspire experiments and characterization for readers who are new to the related fields.
稀土发光材料格位占据能量传递晶体结构光谱分辨率
Rare-earth luminescence materialsSite occupationEnergy transferCrystal structureSpectral resolution
NING L, LIN L, LI L, et al. Electronic properties and 4f→5d transitions in Ce-doped Lu2SiO5: a theoretical investigation [J]. Journal of Materials Chemistry, 2012, 22: 13723-13731. doi: 10.1039/c2jm31631ehttp://dx.doi.org/10.1039/c2jm31631e
DUTCZAK D, STEL TJ, RONDA C, et al. Eu2+ luminescence in strontium aluminates [J]. Physical Chemistry Chemical Physics, 2015, 17: 15236-15249. doi: 10.1039/c5cp01095khttp://dx.doi.org/10.1039/c5cp01095k
PIAO X, K-iMACHIDA, HORIKAWA T, et al. Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8: Eu2+ phosphors for white light-emitting diodes [J]. Applied Physics Letters, 2007, 91. doi: 10.1063/1.2760038http://dx.doi.org/10.1063/1.2760038
FENG J, CHENG Y, TANG C, et al. Nd3+-Doped La2CaB8O16 Crystals for Orthogonally Polarized Dual-Wavelength Near-Infrared Lasers [J]. Chemistry of Materials, 2023, 35: 739-746.
LIN L, NING L, ZHOU R, et al. Site Occupation of Eu2+ in Ba2–xSrxSiO4 (x= 0–1.9) and Origin of Improved Luminescence Thermal Stability in the Intermediate Composition [J]. Inorganic chemistry, 2018, 57: 7090-7096. doi: 10.1021/acs.inorgchem.8b00773http://dx.doi.org/10.1021/acs.inorgchem.8b00773
QIAO J, ZHOU Y, MOLOKEEV M S, et al. Narrow bandwidth luminescence in Sr2Li(Al,Ga)O4:Eu2+ by selective site occupancy engineering for high definition displays [J]. Laser & Photonics Reviews, 2021, 15: 2100392. doi: 10.1002/lpor.202100392http://dx.doi.org/10.1002/lpor.202100392
姬海鹏. 荧光粉中激活剂离子掺杂格位分析 [J]. 发光学报, 2022, 43: 26-41. doi: 10.37188/CJL.20210309http://dx.doi.org/10.37188/CJL.20210309
LI G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs [J]. Chemical Society Reviews, 2015, 44: 8688-8713. doi: 10.1039/c4cs00446ahttp://dx.doi.org/10.1039/c4cs00446a
CHEN P, ZHOU Y, HE J, et al. On the Crystal Chemistry of RE2Si2O7: Revisited Structures, Group–Subgroup Relationship, and Insights of Ce3+-Activated Radioluminescence [J]. Chemistry of Materials, 2023, 35: 2635-2646.
TSUBOTA Y, KANEKO J H, HIGUCHI M, et al. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging [J]. Applied Physics Express, 2015, 8: 062602. doi: 10.7567/apex.8.062602http://dx.doi.org/10.7567/apex.8.062602
SMOLIN Y I, SHEPELEV Y F. The crystal structures of the rare earth pyrosilicates [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1970, 26: 484-492. doi: 10.1107/s0567740870002698http://dx.doi.org/10.1107/s0567740870002698
HIROSAKI N, TAKEDA T, FUNAHASHI S, et al. Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach [J]. Chemistry of Materials, 2014, 26: 4280-4288. doi: 10.1021/cm501866xhttp://dx.doi.org/10.1021/cm501866x
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material [J]. Nature materials, 2014, 13: 891-896. doi: 10.1038/nmat4012http://dx.doi.org/10.1038/nmat4012
LIU C, LIANG H, KUANG X, et al. Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV–UV excitation [J]. Inorganic Chemistry, 2012, 51: 8802-8809. doi: 10.1021/ic3006053http://dx.doi.org/10.1021/ic3006053
JARY V, NIKL M, KUROSAWA S, et al. Luminescence characteristics of the Ce3+-doped pyrosilicates: The case of La-admixed Gd2Si2O7 single crystals [J]. The Journal of Physical Chemistry C, 2014, 118: 26521-26529. doi: 10.1021/jp5080384http://dx.doi.org/10.1021/jp5080384
YOSHINO M, HORIAI T, TAKASUGI T, et al. Temperature dependence and quenching characteristics of (La,Gd)2Si2O7 scintillators at various Ce concentrations [J]. arXiv, Condensed Matter, Materials Science, 2021. doi: 10.48550/arXiv.2110.13482http://dx.doi.org/10.48550/arXiv.2110.13482
SHI R, HUANG X, LIU T, et al. Optical properties of Ce-doped Li4SrCa(SiO4)2: a combined experimental and theoretical study [J]. Inorganic Chemistry, 2018, 57: 1116-1124. doi: 10.1021/acs.inorgchem.7b02561http://dx.doi.org/10.1021/acs.inorgchem.7b02561
ZHOU W, HOU D, PAN F, et al. VUV-vis photoluminescence, X-ray radioluminescence and energy transfer dynamics of Ce3+ and Pr3+ doped LiCaBO3 [J]. Journal of Materials Chemistry C, 2015, 3: 9161-9169. doi: 10.1039/c5tc01834jhttp://dx.doi.org/10.1039/c5tc01834j
BRIK M, MA C, PIASECKI M, et al. Mn4+ Ions for Solid State Lighting [J]. Chinese Journal of Luminescence, 2020, 41: 1011-1029. doi: 10.1016/j.jlumin.2019.116834http://dx.doi.org/10.1016/j.jlumin.2019.116834
BINNEMANS K. Interpretation of europium (III) spectra [J]. Coordination Chemistry Reviews, 2015, 295: 1-45. doi: 10.1016/j.ccr.2015.02.015http://dx.doi.org/10.1016/j.ccr.2015.02.015
TANNER P A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium [J]. Chemical Society Reviews, 2013, 42: 5090-5101. doi: 10.1039/c3cs60033ehttp://dx.doi.org/10.1039/c3cs60033e
陈巧玲, 景伟国, 尚龙兵, et al. 固体中过渡金属离子占位, 价态及光谱性质的第一性原理研究 [J]. 发光学报, 2023, 44: 1220-1238.
ZENG H, ZHOU T, WANG L, et al. Two-site occupation for exploring ultra-broadband near-infrared phosphor—double-perovskite La2MgZrO6: Cr3+ [J]. Chemistry of Materials, 2019, 31: 5245-5253. doi: 10.1021/acs.chemmater.9b01587http://dx.doi.org/10.1021/acs.chemmater.9b01587
ZHANG Q, LIU D, DANG P, et al. Two selective sites control of Cr3+-doped ABO4 phosphors for tuning ultra-broadband near‐infrared photoluminescence and multi-applications [J]. Laser & Photonics Reviews, 2022, 16: 2100459. doi: 10.1002/lpor.202100459http://dx.doi.org/10.1002/lpor.202100459
RAJENDRAN V, FANG M-H, GUZMAN G N D, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications [J]. ACS Energy Letters, 2018, 3: 2679-2684. doi: 10.1021/acsenergylett.8b01643http://dx.doi.org/10.1021/acsenergylett.8b01643
ZHAO F, SONG Z, LIU Q. Advances in chromium‐activated phosphors for near-infrared light sources [J]. Laser & Photonics Reviews, 2022, 16: 2200380. doi: 10.1002/lpor.202200380http://dx.doi.org/10.1002/lpor.202200380
ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications [J]. Nature nanotechnology, 2015, 10: 924-936. doi: 10.1038/nnano.2015.251http://dx.doi.org/10.1038/nnano.2015.251
LI X, ZHANG F, ZHAO D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure [J]. Chemical Society Reviews, 2015, 44: 1346-1378. doi: 10.1039/c4cs00163jhttp://dx.doi.org/10.1039/c4cs00163j
SUN L-D, WANG Y-F, YAN C-H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra [J]. Accounts of chemical research, 2014, 47: 1001-1009. doi: 10.1021/ar400218thttp://dx.doi.org/10.1021/ar400218t
SHI R, BRITES C D, CARLOS L D. Hexagonal-phase NaREF4 upconversion nanocrystals: the matter of crystal structure [J]. Nanoscale, 2021, 13: 19771-19782. doi: 10.1039/d1nr04209bhttp://dx.doi.org/10.1039/d1nr04209b
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution