浏览全部资源
扫码关注微信
1.鹏城实验室, 广东 深圳 518055
2.南方科技大学 电子与电气工程系, 广东 深圳 518055
Published:05 November 2023,
Received:09 August 2023,
Revised:27 August 2023,
移动端阅览
张楠,谢启杰,纳全鑫等.硅基量子点激光器研究进展[J].发光学报,2023,44(11):2011-2026.
ZHANG Nan,XIE Qijie,NA Quanxin,et al.Research Progress on Silicon-based Quantum Dot Lasers[J].Chinese Journal of Luminescence,2023,44(11):2011-2026.
张楠,谢启杰,纳全鑫等.硅基量子点激光器研究进展[J].发光学报,2023,44(11):2011-2026. DOI: 10.37188/CJL.20230185.
ZHANG Nan,XIE Qijie,NA Quanxin,et al.Research Progress on Silicon-based Quantum Dot Lasers[J].Chinese Journal of Luminescence,2023,44(11):2011-2026. DOI: 10.37188/CJL.20230185.
随着全球数据流量的不断增长,硅基光子集成电路已经成为高性能芯片内/芯片间光通信领域中一个极具发展潜力的研究方向。然而,由于本征硅的发光效率极低,硅基片上光源成为光子集成电路中最具挑战性的元器件。为了解决缺乏原生光源的问题,硅基集成的Ⅲ⁃Ⅴ族半导体激光器已经得到了广泛研究,该激光器提供了优越的光学和电学性能。值得注意的是,在Ⅲ⁃Ⅴ族半导体激光器中使用量子点作为增益介质已经引起了诸多关注,因为它具有多种优点,如对晶体缺陷的容忍度高、温度敏感度低、阈值电流密度低和反射灵敏度低等。使用量子点的激光增益区在光子集成方面相比量子阱有许多改进。增益带宽可以根据需要进行设计优化,并在整个近红外光范围内实现激射。量子态与周围材料的大能级分离使其获得了优异的高温性能和亚皮秒时间尺度的增益恢复。本文从量子点材料及量子点激光器、基于晶圆键合技术、基于倒装键合技术、基于直接外延生长技术等多个角度,综述了硅基Ⅲ⁃Ⅴ族半导体量子点激光器的最新研究进展,并对其未来前景和挑战进行了探讨。
With the continuous growth of global data traffic, silicon-based photonic integrated circuits have become an up-and-coming solution in the field of high-performance intra-chip/inter-chip optical communications. However, due to silicon's extremely low intrinsic luminescence efficiency, on-chip light sources have become the most challenging components in photonic integrated circuits. To address the lack of native light sources, silicon-integrated Ⅲ-Ⅴ semiconductor lasers have been extensively studied, which offer superior optical and electrical performance. Notably, using quantum dots as the gain medium in Ⅲ-Ⅴ semiconductor lasers has garnered much attention due to several advantages, such as high tolerance to crystal defects, high temperature insensitivity, low threshold current density and low reflection sensitivity,
etc
. Using quantum dots in the laser gain region brings many improvements in photonic integration compared to quantum wells. The gain bandwidth can be designed to be optimized as needed and enable lasing over the entire near-infrared range. The large energy level separation between quantum states and the surrounding material gives them excellent high-temperature performance and sub-picosecond timescale gain recovery. This paper provides a comprehensive review of the latest research progress on silicon-based Ⅲ-Ⅴ semiconductor quantum dot lasers from various perspectives, including quantum dot materials and quantum dot lasers based on wafer bonding technology, flip-chip bonding technology, and direct epitaxial growth technology, and discusses their prospects and challenges.
硅光子学片上量子点激光器光子集成
silicon photonicson-chip quantum dot lasersphotonic integration
Cisco. Cisco annual internet report (2018—2023) white paper [R]. San Jose, CA: Cisco, 2020.
TANG Z L, CHEN S L, LI D, et al. Two-dimensional optoelectronic devices for silicon photonic integration [J]. J. Materiom., 2023, 9(3): 551-567. doi: 10.1016/j.jmat.2022.11.007http://dx.doi.org/10.1016/j.jmat.2022.11.007
WEISS P. Pushing the data capacity limit with lasers on silicon [J]. Engineering, 2019, 5(5): 824-825. doi: 10.1016/j.eng.2019.08.011http://dx.doi.org/10.1016/j.eng.2019.08.011
YANG J J, TANG M C, CHEN S M, et al. From past to future: on-chip laser sources for photonic integrated circuits [J]. Light. Sci. Appl., 2023, 12(1): 16. doi: 10.1038/s41377-022-01006-0http://dx.doi.org/10.1038/s41377-022-01006-0
LIANG D, BOWERS J E. Recent progress in lasers on silicon [J]. Nat. Photonics, 2010, 4(8): 511-517. doi: 10.1038/nphoton.2010.167http://dx.doi.org/10.1038/nphoton.2010.167
URINO Y, USUKI Y, FUJIKATA J, et al. High-density optical interconnects by using silicon photonics [C]. Proceedings of SPIE 9010, Next⁃generation Optical Networks for Data Centers and Short⁃reach Links, San Francisco, USA, 2014: 901006. doi: 10.1117/12.2041418http://dx.doi.org/10.1117/12.2041418
SHIMIZU T, HATORI N, OKANO M, et al. High-density hybridly integrated light source with a laser diode array on a silicon optical waveguide platform [C]. Integrated Photonics Research, Silicon and Nanophotonics 2012, Colorado Springs, 2012: ITu4B.5. doi: 10.1364/iprsn.2012.itu4b.5http://dx.doi.org/10.1364/iprsn.2012.itu4b.5
FANG Z, CHEN Q Y, ZHAO C Z. A review of recent progress in lasers on silicon [J]. Opt. Laser Technol., 2013, 46: 103-110. doi: 10.1016/j.optlastec.2012.05.041http://dx.doi.org/10.1016/j.optlastec.2012.05.041
ZHOU Z P, YIN B, MICHEL J. On-chip light sources for silicon photonics [J]. Light. Sci. Appl., 2015, 4(11): e358. doi: 10.1038/lsa.2015.131http://dx.doi.org/10.1038/lsa.2015.131
BUFFOLO M, DE SANTI C, NORMAN J, et al. A review of the reliability of integrated IR laser diodes for silicon photonics [J]. Electronics, 2021, 10(22): 2734. doi: 10.3390/electronics10222734http://dx.doi.org/10.3390/electronics10222734
WIRTHS S, BUCA D, MANTL S. Si-Ge-Sn alloys: From growth to applications [J]. Prog. Cryst. Growth Charact. Mater., 2016, 62(1): 1-39. doi: 10.1016/j.pcrysgrow.2015.11.001http://dx.doi.org/10.1016/j.pcrysgrow.2015.11.001
LI N X, CHEN G Y, NG D K T, et al. Integrated lasers on silicon at communication wavelength: a progress review [J]. Adv. Opt. Mater., 2022, 10(23): 2201008. doi: 10.1002/adom.202201008http://dx.doi.org/10.1002/adom.202201008
KOMLJENOVIC T, DAVENPORT M, HULME J, et al. Heterogeneous silicon photonic integrated circuits [J]. J. Lightwave Technol., 2016, 34(1): 20-35. doi: 10.1109/jlt.2015.2465382http://dx.doi.org/10.1109/jlt.2015.2465382
ZHANG J, MULIUK G, JUVERT J, et al. Ⅲ-Ⅴ-on-Si photonic integrated circuits realized using micro-transfer-printing [J]. APL photonics, 2019, 4(11): 110803. doi: 10.1063/1.5120004http://dx.doi.org/10.1063/1.5120004
WANG T, LIU H Y, LEE A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates [J]. Opt. Express, 2011, 19(12): 11381-11386. doi: 10.1364/oe.19.011381http://dx.doi.org/10.1364/oe.19.011381
SILVERSTONE J W, WANG J, BONNEAU D, et al. Silicon quantum photonics [C]. 2016 International Conference on Optical MEMS and Nanophotonics (OMN), Singpore, 2016: 1-2. doi: 10.1109/omn.2016.7565856http://dx.doi.org/10.1109/omn.2016.7565856
SUBRAMANIAN A Z, RYCKEBOER E, DHAKAL A, et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] [J]. Photon. Res., 2015, 3(5): B47-B59. doi: 10.1364/prj.3.000b47http://dx.doi.org/10.1364/prj.3.000b47
ROGERS C, PIGGOTT A Y, THOMSON D J, et al. A universal 3D imaging sensor on a silicon photonics platform [J]. Nature, 2021, 590(7845): 256-261. doi: 10.1038/s41586-021-03259-yhttp://dx.doi.org/10.1038/s41586-021-03259-y
CODDINGTON I, SWANN W C, NENADOVIC L, et al. Rapid and precise absolute distance measurements at long range [J]. Nat. Photon., 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94http://dx.doi.org/10.1038/nphoton.2009.94
CAO V, PARK J S, TANG M C, et al. Recent progress of quantum dot lasers monolithically integrated on Si platform [J]. Front. Phys., 2022, 10: 839953. doi: 10.3389/fphy.2022.839953http://dx.doi.org/10.3389/fphy.2022.839953
ZHOU Z C, OU X P, FANG Y T, et al. Prospects and applications of on-chip lasers [J]. elight, 2023, 3(1): 1. doi: 10.1186/s43593-022-00027-xhttp://dx.doi.org/10.1186/s43593-022-00027-x
LIU A Y, SRINIVASAN S, NORMAN J, et al. Quantum dot lasers for silicon photonics[Invited] [J]. Photon. Res., 2015, 3(5): B1-B9. doi: 10.1364/prj.3.0000b1http://dx.doi.org/10.1364/prj.3.0000b1
HAN Y, LAU K M. Ⅲ-Ⅴ lasers selectively grown on (001) silicon [J]. J. Appl. Phys., 2020, 128(20): 200901. doi: 10.1063/5.0029804http://dx.doi.org/10.1063/5.0029804
SHANG C, FENG K Y, HUGHES E T, et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers [J]. Light. Sci. Appl., 2022, 11(1): 299. doi: 10.1038/s41377-022-00982-7http://dx.doi.org/10.1038/s41377-022-00982-7
SHANG C, BEGLEY M R, GIANOLA D S, et al. Crack propagation in low dislocation density quantum dot lasers epitaxially grown on Si [J]. APL Mater., 2022, 10(1): 011114. doi: 10.1063/5.0077199http://dx.doi.org/10.1063/5.0077199
HAN Y, PARK H, BOWERS J, et al. Recent advances in light sources on silicon [J]. Adv. Opt. Photon., 2022, 14(3): 404-454. doi: 10.1364/aop.455976http://dx.doi.org/10.1364/aop.455976
ARAKAWA Y, SAKAKI H. Multidimensional quantum well laser and temperature dependence of its threshold current [J]. Appl. Phys. Lett., 1982, 40(11): 939-941. doi: 10.1063/1.92959http://dx.doi.org/10.1063/1.92959
陈鹏, 刘育梁. 量子点激光器 [J]. 微纳电子技术, 2005, 42(7): 311-317. doi: 10.3969/j.issn.1671-4776.2005.07.004http://dx.doi.org/10.3969/j.issn.1671-4776.2005.07.004
CHEN P, LIU Y L. Quantum dot laser [J]. Nanoelectr. Dev. Technol., 2005, 42(7): 311-317. (in Chinese). doi: 10.3969/j.issn.1671-4776.2005.07.004http://dx.doi.org/10.3969/j.issn.1671-4776.2005.07.004
NORMAN J C, MIRIN R P, BOWERS J E. Quantum dot lasers:History and future prospects [J]. J. Vac. Sci. Technol. A, 2021, 39(2): 020802. doi: 10.1116/6.0000768http://dx.doi.org/10.1116/6.0000768
MITIN V V, KOCHELAP V A, STROSCIO M A. Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications [M]. Cambridge: Cambridge University Press, 2007. doi: 10.1017/cbo9780511809095http://dx.doi.org/10.1017/cbo9780511809095
NISHI K, TAKEMASA K, SUGAWARA M, et al. Development of quantum dot lasers for data-com and silicon photonics applications [J]. IEEE J. Sel. Top. Quantum Electron., 2017, 23(6): 1901007. doi: 10.1109/jstqe.2017.2699787http://dx.doi.org/10.1109/jstqe.2017.2699787
YANG J J, LIU Z Z, JURCZAK P, et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates [J]. J. Phys. D: Appl. Phys., 2021, 54(3): 035103. doi: 10.1088/1361-6463/abbb49http://dx.doi.org/10.1088/1361-6463/abbb49
KIRSTAEDTER N, LEDENTSOV N N, GRUNDMANN M, et al. Low threshold, large To injection laser emission from (InGa) As quantum dots [J]. Electron. Lett., 1994, 30(17): 1416-1417. doi: 10.1049/el:19940939http://dx.doi.org/10.1049/el:19940939
宁永强, 王立军. 半导体量子点激光器的发展 [J]. 光机电信息, 2002(4): 26-30. doi: 10.3969/j.issn.1007-1180.2002.04.005http://dx.doi.org/10.3969/j.issn.1007-1180.2002.04.005
NING Y Q, WANG L J. The development of semiconductor quantum dot lasers [J]. Ome Inf., 2002(4): 26-30. (in Chinese). doi: 10.3969/j.issn.1007-1180.2002.04.005http://dx.doi.org/10.3969/j.issn.1007-1180.2002.04.005
SEBALD K, MICHLER P, GUTOWSKI J, et al. Optical gain of CdSe quantum dot stacks [J]. Phys. Status Solidi (A), 2002, 190(2): 593-597. doi: 10.1002/1521-396x(200204)190:2<593::aid-pssa593>3.0.co;2-4http://dx.doi.org/10.1002/1521-396x(200204)190:2<593::aid-pssa593>3.0.co;2-4
MUKHAMETZHANOV I, WEI Z, HEITZ R, et al. Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution [J]. Appl. Phys. Lett., 1999, 75(1): 85-87. doi: 10.1063/1.124284http://dx.doi.org/10.1063/1.124284
WASILEWSKI Z R, FAFARD S, MCCAFFREY J P. Size and shape engineering of vertically stacked self-assembled quantum dots [J]. J. Cryst. Growth, 1999, 201-202: 1131-1135. doi: 10.1016/s0022-0248(98)01539-5http://dx.doi.org/10.1016/s0022-0248(98)01539-5
MATTHEWS J W, BLAKESLEE A E. Defects in epitaxial multilayers: I. Misfit dislocations [J]. J. Cryst. Growth, 1974, 27: 118-125. doi: 10.1016/0022-0248(74)90424-2http://dx.doi.org/10.1016/0022-0248(74)90424-2
URINO Y, HATORI N, MIZUTANI K, et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 C [J]. J. Lightwave Technol., 2015, 33(6): 1223-1229. doi: 10.1109/jlt.2014.2380811http://dx.doi.org/10.1109/jlt.2014.2380811
MIZUTANI K, YASHIKI K, KURIHARA M, et al. Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser [C]. 2015 European Conference on Optical Communication (ECOC), Valencia, 2015: 1-3. doi: 10.1109/ecoc.2015.7341763http://dx.doi.org/10.1109/ecoc.2015.7341763
TANABE K, GUIMARD D, BORDEL D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer [J]. Opt. Express, 2010, 18(10): 10604-10608. doi: 10.1364/oe.18.010604http://dx.doi.org/10.1364/oe.18.010604
TANABE K, WATANABE K, ARAKAWA Y. Ⅲ-Ⅴ/ S i hybrid photonic devices by direct fusion bonding [J]. Sci. Rep., 2012, 2(1): 349. doi: 10.1038/srep00349http://dx.doi.org/10.1038/srep00349
WAN Y T, XIANG C, GUO J, et al. High speed evanescent quantum-dot lasers on Si [J]. Laser Photon. Rev., 2021, 15(8): 2100057. doi: 10.1002/lpor.202170042http://dx.doi.org/10.1002/lpor.202170042
KEYVANINIA S, MUNEEB M, STANKOVIĆ S, et al. Ultra-thin DVS-BCB adhesive bonding of Ⅲ-Ⅴ wafers, dies and multiple dies to a patterned silicon-on-insulator substrate [J]. Opt. Mater. Express, 2013, 3(1): 35-46. doi: 10.1364/ome.3.000035http://dx.doi.org/10.1364/ome.3.000035
TEKIN T. Review of packaging of optoelectronic, photonic, and MEMS components [J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(3): 704-719. doi: 10.1109/jstqe.2011.2113171http://dx.doi.org/10.1109/jstqe.2011.2113171
王中武. 硅基异质集成Ⅲ⁃Ⅴ激光器倒装键合关键技术研究 [D]. 南京: 东南大学, 2021.
WANG Z W. Research on Key Technologies of Flip⁃chip Bonding of Heterogeneously Integrated Ⅲ⁃Ⅴ⁃on⁃Silicon Laser [D]. Nanjing: Southeast University, 2021. (in Chinese)
HUTTER M. Verbindungstechnik Höchster Zuverlässigkeit für Optoelektronische [M]. Komponenten: Fraunhofer-Verlag, 2009.
SHIMIZU T, ISHIZAKA M, HATORI N, et al. Multi-channel hybrid integrated light source for ultra-high-bandwidth optical interconnections and its structural optimization for low power consumption by considering thermal interference between LD arrays [J]. Trans. Jpn. Inst. Electron. Packag., 2014, 7(1): 94-103. doi: 10.5104/jiepeng.7.94http://dx.doi.org/10.5104/jiepeng.7.94
NAKAMURA T, YASHIKI K, MIZUTANI K, et al. Fingertip-size optical module, “Optical I/O Core”, and its application in FPGA [J]. IEICE Trans. Electron., 2019, E102C(4): 333-339. doi: 10.1587/transele.2018odi0005http://dx.doi.org/10.1587/transele.2018odi0005
ARAKAWA Y, NAKAMURA T, KWOEN J. Quantum dot lasers for silicon photonics [J]. Semiconduct. Semimet., 2019, 101: 91-138. doi: 10.1016/bs.semsem.2019.07.007http://dx.doi.org/10.1016/bs.semsem.2019.07.007
王子昊, 王霆, 张建军. 硅基光电异质集成的发展与思考 [J]. 中国科学院院刊, 2022, 37(3): 360-367
WANG Z H, WANG T, ZHANG J J. Development and thinking of silicon photonics heterogenous integration [J]. Bull. Chin. Acad. Sci., 2022, 37(3): 360-367. (in Chinese)
LI W, CHEN S, TANG M, et al. Effect of rapid thermal annealing on threading dislocation density in Ⅲ-Ⅴ epilayers monolithically grown on silicon [J]. J. Appl. Phys., 2018, 123(21): 215303. doi: 10.1063/1.5011161http://dx.doi.org/10.1063/1.5011161
LI Q, WAN Y T, LIU A Y, et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon [J]. Opt. Express, 2016, 24(18): 21038-21045. doi: 10.1364/oe.24.021038http://dx.doi.org/10.1364/oe.24.021038
NORMAN J C, JUNG D, WAN Y T, et al. Perspective: The future of quantum dot photonic integrated circuits [J]. APL Photon., 2018, 3(3): 030901. doi: 10.1063/1.5021345http://dx.doi.org/10.1063/1.5021345
WANG Z C, TIAN B, PANTOUVAKI M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon [J]. Nat. Photon., 2015, 9(12): 837-842. doi: 10.1038/nphoton.2015.199http://dx.doi.org/10.1038/nphoton.2015.199
PARK J S, TANG M C, CHEN S M, et al. Heteroepitaxial growth of Ⅲ-Ⅴ semiconductors on silicon [J]. Crystals, 2020, 10(12): 1163. doi: 10.3390/cryst10121163http://dx.doi.org/10.3390/cryst10121163
SELVIDGE J, NORMAN J, HUGHES E T, et al. Defect filtering for thermal expansion induced dislocations in III⁃V lasers on silicon [J]. Appl. Phys. Lett., 2020, 117(12): 122101. doi: 10.1063/5.0023378http://dx.doi.org/10.1063/5.0023378
CHEN S M, LI W, WU J, et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon [J]. Nat. Photon., 2016, 10(5): 307-311. doi: 10.1038/nphoton.2016.21http://dx.doi.org/10.1038/nphoton.2016.21
LIANG D, SRINIVASAN S, DESCOS A, et al. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations [J]. Optica, 2021, 8(5): 591-593. doi: 10.1364/optica.424975http://dx.doi.org/10.1364/optica.424975
TOURNIÉ E, BARTOLOME L M, CALVO MRIO, et al. Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates [J]. Light. Sci. Appl., 2022, 11(1): 165. doi: 10.1038/s41377-022-00850-4http://dx.doi.org/10.1038/s41377-022-00850-4
CHEN S M, LIAO M Y, TANG M C, et al. Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates [J]. Opt. Express, 2017, 25(5): 4632-4639. doi: 10.1364/oe.25.004632http://dx.doi.org/10.1364/oe.25.004632
WANG Y, CHEN S M, YU Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon [J]. Optica, 2018, 5(5): 528-533. doi: 10.1364/optica.5.000528http://dx.doi.org/10.1364/optica.5.000528
KWOEN J, JANG B, LEE J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001) [J]. Opt. Express, 2018, 26(9): 11568-11576. doi: 10.1364/oe.26.011568http://dx.doi.org/10.1364/oe.26.011568
LIAO M Y, CHEN S M, LIU Z X, et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon [J]. Photon. Res., 2018, 6(11): 1062-1066. doi: 10.1364/prj.6.001062http://dx.doi.org/10.1364/prj.6.001062
KWOEN J, JANG B, WATANABE K, et al. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001) [J]. Opt. Express, 2019, 27(3): 2681-2688. doi: 10.1364/oe.27.002681http://dx.doi.org/10.1364/oe.27.002681
WAN Y T, ZHANG S, NORMAN J C, et al. Tunable quantum dot lasers grown directly on silicon [J]. Optica, 2019, 6(11): 1394-1400. doi: 10.1364/optica.6.001394http://dx.doi.org/10.1364/optica.6.001394
WAN Y T, NORMAN J C, TONG Y Y, et al. 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si [J]. Laser Photon. Rev., 2020, 14(7): 2000037. doi: 10.1002/lpor.202070042http://dx.doi.org/10.1002/lpor.202070042
WANG Y L, WANG Y L, MA B, et al. InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers [J]. Opt. Express, 2023, 31(3): 4862-4872. doi: 10.1364/oe.475976http://dx.doi.org/10.1364/oe.475976
LV Z R, WANG S, WANG S L, et al. Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 ℃ [J]. Opt. Express, 2023, 31(15): 24173-24182. doi: 10.1364/oe.494251http://dx.doi.org/10.1364/oe.494251
WEI W Q, WANG J H, ZHANG B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1 300 nm and 1 550 nm [J]. Appl. Phys. Lett., 2018, 113(5): 053107. doi: 10.1063/1.5043169http://dx.doi.org/10.1063/1.5043169
VOLZ K, BEYER A, WITTE W, et al. GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration [J]. J. Cryst. Growth, 2011, 315(1): 37-47. doi: 10.1016/j.jcrysgro.2010.10.036http://dx.doi.org/10.1016/j.jcrysgro.2010.10.036
FENG K Y, SHANG C, HUGHES E, et al. Quantum dot lasers directly grown on 300 mm Si wafers: planar and in-pocket [J]. Photonics, 2023, 10(5): 534. doi: 10.3390/photonics10050534http://dx.doi.org/10.3390/photonics10050534
LIU Z Z, HANTSCHMANN C, TANG M C, et al. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon [J]. J. Lightwave Technol., 2020, 38(2): 240-248. doi: 10.1109/jlt.2019.2925598http://dx.doi.org/10.1109/jlt.2019.2925598
KAGEYAMA T, NISHI K, YAMAGUCHI M, et al. Extremely high temperature (220 ℃) continuous-wave operation of 1 300-nm-range quantum-dot lasers [C]. 2011 Conference on Lasers and Electro-optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), Munich, 2011: 1. doi: 10.1109/cleoe.2011.5943701http://dx.doi.org/10.1109/cleoe.2011.5943701
GRILLOT F, NORMAN J C, DUAN J N, et al. Physics and applications of quantum dot lasers for silicon photonics [J]. Nanophotonics, 2020, 9(6): 1271-1286. doi: 10.1515/nanoph-2019-0570http://dx.doi.org/10.1515/nanoph-2019-0570
SHANG C, HUGHES E, WAN Y T, et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters [J]. Optica, 2021, 8(5): 749-754. doi: 10.1364/optica.423360http://dx.doi.org/10.1364/optica.423360
WEI W Q, HE A, YANG B, et al. Monolithic integration of embedded Ⅲ-Ⅴ lasers on SOI [J]. Light. Sci. Appl., 2023, 12(1): 84. doi: 10.1038/s41377-023-01128-zhttp://dx.doi.org/10.1038/s41377-023-01128-z
HUANG J, WEI W T, SELVIDGE J, et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits [J]. ACS Photonics, 2021, 8(9): 2555-2566. doi: 10.1021/acsphotonics.1c00707http://dx.doi.org/10.1021/acsphotonics.1c00707
0
Views
810
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution