浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
2.中国科学技术大学 应用化学与工程学院, 安徽 合肥 230026
3.清华大学 化学系, 北京 100084
Published:05 July 2023,
Received:08 May 2023,
Revised:26 May 2023,
扫 描 看 全 文
薛东芝,王樱蕙,张洪杰.近红外二区发光材料在脑成像中的研究进展[J].发光学报,2023,44(07):1131-1148.
XUE Dongzhi,WANG Yinghui,ZHANG Hongjie.Design of NIR-Ⅱ Luminescent Materials and Applications in Brain Imaging[J].Chinese Journal of Luminescence,2023,44(07):1131-1148.
薛东芝,王樱蕙,张洪杰.近红外二区发光材料在脑成像中的研究进展[J].发光学报,2023,44(07):1131-1148. DOI: 10.37188/CJL.20230122.
XUE Dongzhi,WANG Yinghui,ZHANG Hongjie.Design of NIR-Ⅱ Luminescent Materials and Applications in Brain Imaging[J].Chinese Journal of Luminescence,2023,44(07):1131-1148. DOI: 10.37188/CJL.20230122.
目前,荧光成像技术已成为生物医学应用中的重要工具之一,但其易受到光的穿透能力有限、组织自体荧光干扰等因素的影响。与可见光和近红外一区(NIR⁃Ⅰ)光相比,近红外二区(NIR⁃Ⅱ) 荧光成像具有更深的穿透深度、更高的成像分辨率和灵敏度、更低的背景噪音和更高的信噪比,因此在脑血管成像和重大脑疾病的成像诊断方面展现出潜在的应用前景。本文主要介绍了不同类型NIR⁃Ⅱ荧光探针及优化其光学性能的策略。同时,总结了这些探针在脑成像方面的研究进展,并对未来临床应用所面临的问题进行了探讨。
At present, fluorescence imaging has become one of the important tools in biomedical applications, but it is very susceptible to the limited penetration of light and auto-fluorescence in tissues. Compared with the fluorescence imaging in visible region and the first near-infrared window(NIR-Ⅰ), the second near-infrared(NIR-Ⅱ) fluorescence imaging show the deeper penetration depth, lower background noise, higher imaging resolution, sensitivity, and signal-to-noise ratio, thus demonstrating the promising applications in cerebrovascular imaging and diagnosis of major brain diseases. Based on this, we mainly focus on the construction of different NIR-Ⅱ fluorescent probes and several strategies to optimize their optical performance. Meanwhile, the recent progress of these probes in brain imaging is summarized and some issues facing the future clinical applications are discussed.
荧光成像近红外二区荧光探针脑疾病
fluorescence imagingNIR-Ⅱfluorescence probebrain diseases
CHEN Y, WANG S F, ZHANG F, et al. Near-infrared luminescence high-contrast in vivo biomedical imaging [J]. Nat. Rev. Bioeng., 2023, 1(1): 60-78. doi: 10.1038/s44222-022-00002-8http://dx.doi.org/10.1038/s44222-022-00002-8
LI C Y, CHEN G C, ZHANG Y J, et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications [J]. J. Am. Chem. Soc., 2020, 142(35): 14789-14804. doi: 10.1021/jacs.0c07022http://dx.doi.org/10.1021/jacs.0c07022
KENRY, DUAN Y K, LIU B. Recent advances of optical imaging in the second near-infrared window [J]. Adv. Mater., 2018, 30(47): 1802394-1-19. doi: 10.1002/adma.201802394http://dx.doi.org/10.1002/adma.201802394
LIN H X, LIN Z X, ZHENG K H, et al. Near‐infrared‐Ⅱ nanomaterials for fluorescence imaging and photodynamic therapy [J]. Adv. Opt. Mater., 2021, 9(9): 2002177-1-21. doi: 10.1002/adom.202002177http://dx.doi.org/10.1002/adom.202002177
LI C Y, WANG Q B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window [J]. ACS Nano, 2018, 12(10): 9654-9659. doi: 10.1021/acsnano.8b07536http://dx.doi.org/10.1021/acsnano.8b07536
LEVY E S, TAJON C A, BISCHOF T S, et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging [J]. ACS Nano, 2016, 10(9): 8423-8433. doi: 10.1021/acsnano.6b03288http://dx.doi.org/10.1021/acsnano.6b03288
ZHONG Y T, MA Z R, WANG F F, et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-Ⅱb rare-earth nanoparticles [J]. Nat. Biotechnol., 2019, 37(11): 1322-1331. doi: 10.1038/s41587-019-0262-4http://dx.doi.org/10.1038/s41587-019-0262-4
LIU Y S, LI Y, KOO S, et al. Versatile types of inorganic/organic NIR-Ⅱa/Ⅱb fluorophores: from strategic design toward molecular imaging and theranostics [J]. Chem. Rev., 2022, 122(1): 209-268. doi: 10.1021/acs.chemrev.1c00553http://dx.doi.org/10.1021/acs.chemrev.1c00553
LEI Z H, ZHANG F. Molecular engineering of NIR-Ⅱ fluorophores for improved biomedical detection [J]. Angew. Chem. Int. Ed., 2021, 60: 16294-16308. doi: 10.1002/anie.202007040http://dx.doi.org/10.1002/anie.202007040
ZHANG K, CHEN F R, WANG L D, et al. Second near-infrared (NIR-Ⅱ) window for imaging-navigated modulation of brain structure and function [J]. Small, 2023, 19(14): 2206044. doi: 10.1002/smll.202206044http://dx.doi.org/10.1002/smll.202206044
SMITH A M, MANCINI M C, NIE S M. Second window for in vivo imaging [J]. Nat. Nanotechnol., 2009, 4(11): 710-711. doi: 10.1038/nnano.2009.326http://dx.doi.org/10.1038/nnano.2009.326
WANG R, ZHOU L, WANG W X, et al. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers [J]. Nat. Commun., 2017, 8: 14702-1-12. doi: 10.1038/ncomms14702http://dx.doi.org/10.1038/ncomms14702
XU Z R, JIANG Y H, FAN M Z, et al. Aggregation‐induced emission nanoprobes working in the NIR‐Ⅱ region: from material design to fluorescence imaging and phototherapy [J]. Adv. Opt. Mater., 2021, 9(20): 2100859-1-27. doi: 10.1002/adom.202100859http://dx.doi.org/10.1002/adom.202100859
ZHAO J Y, ZHONG D, ZHOU S B. NIR-Ⅰ-to-NIR-Ⅱ fluorescent nanomaterials for biomedical imaging and cancer therapy [J]. J. Mater. Chem. B, 2018, 6(3): 349-365. doi: 10.1039/c7tb02573dhttp://dx.doi.org/10.1039/c7tb02573d
CONKLIN B, CONLEY B M, HOU Y N, et al. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials [J]. Adv. Drug Deliv. Rev., 2023, 192: 114636. doi: 10.1016/j.addr.2022.114636http://dx.doi.org/10.1016/j.addr.2022.114636
ZHANG X, ZHOU J, GU Z W, et al. Advances in nanomedicines for diagnosis of central nervous system disorders [J]. Biomaterials, 2021, 269: 120492-1-29. doi: 10.1016/j.biomaterials.2020.120492http://dx.doi.org/10.1016/j.biomaterials.2020.120492
JO S, SUN I C, AHN C H, et al. Recent trend of ultrasound-mediated nanoparticle delivery for brain imaging and treatment [J]. ACS Appl. Mater. Interfaces, 2023, 15(1): 120-137. doi: 10.1021/acsami.1c22803http://dx.doi.org/10.1021/acsami.1c22803
FURTADO D, BJÖRNMALM M, AYTON S, et al. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases [J]. Adv. Mater., 2018, 30(46): 1801362-1-66. doi: 10.1002/adma.201801362http://dx.doi.org/10.1002/adma.201801362
KOO Y E L, REDDY G R, BHOJANI M, et al. Brain cancer diagnosis and therapy with nanoplatforms [J]. Adv. Drug Deliv. Rev., 2006, 58(14): 1556-1577. doi: 10.1016/j.addr.2006.09.012http://dx.doi.org/10.1016/j.addr.2006.09.012
ZHANG L, LIU Y, HUANG H Y, et al. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors [J]. Adv. Drug Deliv. Rev., 2022, 190: 114536. doi: 10.1016/j.addr.2022.114536http://dx.doi.org/10.1016/j.addr.2022.114536
WEI Z, LIU Y W, LI B, et al. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation [J]. Light: Sci. Appl., 2022, 11(1): 175-1-19. doi: 10.1038/s41377-022-00922-5http://dx.doi.org/10.1038/s41377-022-00922-5
REN F, LIU H H, ZHANG H, et al. Engineering NIR-Ⅱb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma [J]. Nano Today, 2020, 34: 100905-1-11. doi: 10.1016/j.nantod.2020.100905http://dx.doi.org/10.1016/j.nantod.2020.100905
HE W, ZHANG Z C, LUO Y M, et al. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery [J]. Biomaterials, 2022, 288: 121709. doi: 10.1016/j.biomaterials.2022.121709http://dx.doi.org/10.1016/j.biomaterials.2022.121709
XUE D Z, WANG Y H, ZHANG H J. Advances of NIR light responsive materials for diagnosis and treatment of brain diseases [J]. Adv. Opt. Mater., 2023, 11(11): 2202888. doi: 10.1002/adom.202202888http://dx.doi.org/10.1002/adom.202202888
YANG X H, WANG Z, HUANG H Y, et al. A targeted activatable NIR-Ⅱb nanoprobe for highly sensitive detection of ischemic stroke in a photothrombotic stroke model [J]. Adv. Healthc. Mater., 2021, 10(5): 2001544. doi: 10.1002/adhm.202001544http://dx.doi.org/10.1002/adhm.202001544
CHEN H J, QIN Y, WANG Z G, et al. An activatable and reversible virus-mimicking NIR-Ⅱ nanoprobe for monitoring the progression of viral encephalitis [J]. Angew. Chem. Int. Ed., 2022, 61(39): e202210285. doi: 10.1002/anie.202210285http://dx.doi.org/10.1002/anie.202210285
KHAN I M, NIAZI S, AKHTAR W, et al. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: fundamental mechanism to future prospects [J]. Coord. Chem. Rev., 2023, 474: 214842. doi: 10.1016/j.ccr.2022.214842http://dx.doi.org/10.1016/j.ccr.2022.214842
PENG L, LIU Y, ZHANG J, et al. Surface plasmon-enhanced NIR-Ⅱ fluorescence in a multilayer nanoprobe for through-skull mouse brain imaging [J]. ACS Appl. Mater. Interfaces, 2022, 14(34): 38575-38583. doi: 10.1021/acsami.2c11218http://dx.doi.org/10.1021/acsami.2c11218
TAN Y, CHEN M N, CHEN H R, et al. Enhanced ultrasound contrast of renal-clearable luminescent gold nanoparticles [J]. Angew. Chem. Int. Ed., 2021, 60(21): 11713-11717. doi: 10.1002/anie.202017273http://dx.doi.org/10.1002/anie.202017273
TAN Y, HE K, TANG B, et al. Precisely regulated luminescent gold nanoparticles for identification of cancer metastases [J]. ACS Nano, 2020, 14(10): 13975-13985. doi: 10.1021/acsnano.0c06388http://dx.doi.org/10.1021/acsnano.0c06388
ZHOU M, JIN R X, SFEIR M Y, et al. Electron localization in rod-shaped triicosahedral gold nanocluster [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(24): E4697-E4705. doi: 10.1073/pnas.1704699114http://dx.doi.org/10.1073/pnas.1704699114
LI Q, ZEMAN IV C J, MA Z R, et al. Bright NIR-Ⅱ photoluminescence in rod-shaped icosahedral gold nanoclusters [J]. Small, 2021, 17(11): 2007992-1-7. doi: 10.1002/smll.202007992http://dx.doi.org/10.1002/smll.202007992
SONG X R, ZHU W, GE X G, et al. A new class of NIR-Ⅱ gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging [J]. Angew. Chem. Int. Ed., 2021, 60(3): 1306-1312. doi: 10.1002/anie.202010870http://dx.doi.org/10.1002/anie.202010870
XU Q, GAO J J, WANG S Y, et al. Quantum dots in cell imaging and their safety issues [J]. J. Mater. Chem. B, 2021, 9(29): 5765-5779. doi: 10.1039/d1tb00729ghttp://dx.doi.org/10.1039/d1tb00729g
SHIBU E S, HAMADA M, NAKANISHI S, et al. Photoluminescence of CdSe and CdSe/ZnS quantum dots: modifications for making the invisible visible at ensemble and single-molecule levels [J]. Coord. Chem. Rev., 2014, 263-264: 2-12. doi: 10.1016/j.ccr.2013.10.014http://dx.doi.org/10.1016/j.ccr.2013.10.014
SHANG Y Q, NING Z J. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes [J]. Natl. Sci. Rev., 2017, 4(2): 170-183. doi: 10.1093/nsr/nww097http://dx.doi.org/10.1093/nsr/nww097
LIANG L J, PENG X M, SUN F F, et al. A review on the cytotoxicity of graphene quantum dots: from experiment to simulation [J]. Nanoscale Adv., 2021, 3(4): 904-917. doi: 10.1039/d0na00904khttp://dx.doi.org/10.1039/d0na00904k
GIDWANI B, SAHU V, SHUKLA S S, et al. Quantum dots: prospectives, toxicity, advances and applications [J]. J. Drug Deliv. Sci. Technol., 2021, 61: 102308-1-16. doi: 10.1016/j.jddst.2020.102308http://dx.doi.org/10.1016/j.jddst.2020.102308
LIAN W, TU D T, HU P, et al. Broadband excitable NIR-Ⅱ luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells [J]. Nano Today, 2020, 35: 100943-1-7. doi: 10.1016/j.nantod.2020.100943http://dx.doi.org/10.1016/j.nantod.2020.100943
AWASTHI P, AN X Y, XIANG J J, et al. Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-Ⅱ biological imaging [J]. Nanoscale, 2020, 12(9): 5678-5684. doi: 10.1039/c9nr10918hhttp://dx.doi.org/10.1039/c9nr10918h
BRUCHEZ JR M, MORONNE M, GIN P, WEISS S, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016. doi: 10.1126/science.281.5385.2013http://dx.doi.org/10.1126/science.281.5385.2013
CHAN W C W, NIE S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385): 2016-2018. doi: 10.1126/science.281.5385.2016http://dx.doi.org/10.1126/science.281.5385.2016
DU Y P, XU B, FU T, et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor [J]. J. Am. Chem. Soc., 2010, 132(5): 1470-1471. doi: 10.1021/ja909490rhttp://dx.doi.org/10.1021/ja909490r
HONG G S, ROBINSON J T, ZHANG Y J, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region [J]. Angew. Chem. Int. Ed., 2012, 51(39): 9818-9821. doi: 10.1002/anie.201206059http://dx.doi.org/10.1002/anie.201206059
DONG B H, LI C Y, CHEN G C, et al. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging [J]. Chem. Mater., 2013, 25(2503): 2503-2509. doi: 10.1021/cm400812vhttp://dx.doi.org/10.1021/cm400812v
HAMILTON M A, BARNES A C, HOWELLS W S, et al. Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering [J]. J. Phys.: Condens. Matter, 2001, 13(11): 2425-2436. doi: 10.1088/0953-8984/13/11/301http://dx.doi.org/10.1088/0953-8984/13/11/301
SWABECK J K, FISCHER S, BRONSTEIN N D, et al. Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting [J]. J. Am. Chem. Soc., 2018, 140(29): 9120-9126. doi: 10.1021/jacs.8b02612http://dx.doi.org/10.1021/jacs.8b02612
SANTOS H D A, GUTIÉRREZ I Z, SHEN Y L, et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging [J]. Nat. Commun., 2020, 11(1): 2933-1-12. doi: 10.1038/s41467-020-16333-2http://dx.doi.org/10.1038/s41467-020-16333-2
ZHANG Y J, YANG H C, AN X Y, et al. Controlled synthesis of Ag2Te@Ag2S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window [J]. Small, 2020, 16(14): 2001003-1-8. doi: 10.1002/smll.202001003http://dx.doi.org/10.1002/smll.202001003
WANG T, WANG S F, LIU Z Y, et al. A hybrid erbium(Ⅲ)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging [J]. Nat. Mater., 2021, 20(11): 1571-1578. doi: 10.1038/s41563-021-01063-7http://dx.doi.org/10.1038/s41563-021-01063-7
LI H, WANG X, OHULCHANSKYY T Y, et al. Lanthanide-doped near-infrared nanoparticles for biophotonics [J]. Adv. Mater., 2021, 33(6): 2000678-1-17. doi: 10.1002/adma.202000678http://dx.doi.org/10.1002/adma.202000678
张松涛, 王樱蕙, 张洪杰. 稀土发光材料在近红外二区成像中的应用 [J]. 发光学报, 2020, 41(12): 1460-1478. doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
ZHANG S T, WANG Y H, ZHANG H J. Lanthanide-doped fluorescence probes for NIR-Ⅱ fluorescence imaging [J]. Chin. J. Lumin., 2020, 41(12): 1460-1478. (in Chinese). doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
陆峰, 赵婷, 孙晓军, 等. 近红外二区发光稀土纳米材料的设计及生物成像应用 [J]. 化学进展, 2022, 34(6): 1348-1358.
LU F, ZHAO T, SUN X J, et al. Design of NIR-Ⅱ emissive rare-earth nanoparticles and their applications for bio-imaging [J]. Prog. Chem., 2022, 34(6): 1348-1358. (in Chinese)
张松涛, 王樱蕙, 张洪杰. Nd3+离子敏化的荧光纳米探针用于近红外二区血管成像 [J]. 应用化学, 2022, 39(4): 685-693. doi: 10.19894/j.issn.1000-0518.210580http://dx.doi.org/10.19894/j.issn.1000-0518.210580
ZHANG S T, WANG Y H, ZHANG H J. Nd3+ sensitized fluorescent nanoprobes for vascular imaging in the second near infrared window [J]. Chin. J. Appl. Chem., 2020, 41(12): 1460-1478. (in Chinese). doi: 10.19894/j.issn.1000-0518.210580http://dx.doi.org/10.19894/j.issn.1000-0518.210580
ZHOU B, YAN L, HUANG J S, et al. NIR Ⅱ-responsive photon upconversion through energy migration in an ytterbium sublattice [J]. Nat. Photonics, 2020, 14(12): 760-766. doi: 10.1038/s41566-020-00714-6http://dx.doi.org/10.1038/s41566-020-00714-6
HUDRY D, HOWARD I A, POPESCU R, et al. Structure-property relationships in lanthanide-doped upconverting nanocrystals: recent advances in understanding core-shell structures [J]. Adv. Mater., 2019, 31(26): 1900623-1-25. doi: 10.1002/adma.201900623http://dx.doi.org/10.1002/adma.201900623
CHEN B, WANG F. Combating concentration quenching in upconversion nanoparticles [J]. Acc. Chem. Res., 2020, 53(2): 358-367. doi: 10.1021/acs.accounts.9b00453http://dx.doi.org/10.1021/acs.accounts.9b00453
LIN L S, SONG J B, YANG H H, et al. Yolk-shell nanostructures: design, synthesis, and biomedical applications [J]. Adv. Mater., 2018, 30(6): 1704639-1-30. doi: 10.1002/adma.201704639http://dx.doi.org/10.1002/adma.201704639
CHEN G Y, OHULCHANSKYY T Y, KUMAR R, et al. Ultrasmall monodisperse NaYF4∶Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. ACS Nano, 2010, 4(6): 3163-3168. doi: 10.1021/nn100457jhttp://dx.doi.org/10.1021/nn100457j
NACZYNSKI D J, TAN M C, ZEVON M, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters [J]. Nat. Commun., 2013, 4: 2199-1-10. doi: 10.1038/ncomms3199http://dx.doi.org/10.1038/ncomms3199
JOHNSON N J J, HE S, DIAO S, et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals [J]. J. Am. Chem. Soc., 2017, 139(8): 3275-3282. doi: 10.1021/jacs.7b00223http://dx.doi.org/10.1021/jacs.7b00223
ZHANG H X, FAN Y, PEI P, et al. Tm3+ -sensitized NIR-Ⅱ fluorescent nanocrystals for in vivo information storage and decoding [J]. Angew. Chem. Int. Ed., 2019, 58(30): 10153-10157. doi: 10.1002/anie.201903536http://dx.doi.org/10.1002/anie.201903536
LI Y Y, ZHANG P S, NING H R, et al. Emitting/sensitizing ions spatially separated lanthanide nanocrystals for visualizing tumors simultaneously through up- and down-conversion near-infrared Ⅱ luminescence in vivo [J]. Small, 2019, 15(51): 1905344-1-12. doi: 10.1002/smll.201905344http://dx.doi.org/10.1002/smll.201905344
ZHONG Y T, MA Z R, ZHU S J, et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1 500 nm [J]. Nat. Commun., 2017, 8(1): 737-1-7. doi: 10.1038/s41467-017-00917-6http://dx.doi.org/10.1038/s41467-017-00917-6
桑若愚, 许兴鹏, 王其, 等. 近红外二区有机小分子荧光探针 [J]. 化学学报, 2020, 78(9): 901-915. doi: 10.6023/a20050190http://dx.doi.org/10.6023/a20050190
SANG R Y, XU X P, WANG Q, et al. Near-infrared-Ⅱ fluorescence probes based on organic small molecules [J]. Acta Chim. Sinica, 2020, 78(9): 901-915. (in Chinese). doi: 10.6023/a20050190http://dx.doi.org/10.6023/a20050190
FANG Y, SHANG J Z, LIU D K, et al. Design, synthesis, and application of a small molecular NIR-Ⅱ fluorophore with maximal emission beyond 1 200 nm [J]. J. Am. Chem. Soc., 2020, 142(36): 15271-15275. doi: 10.1021/jacs.0c08187http://dx.doi.org/10.1021/jacs.0c08187
LEI Z H, SUN C X, PEI P, et al. Stable, wavelength-tunable fluorescent dyes in the NIR-Ⅱ region for in vivo high-contrast bioimaging and multiplexed biosensing [J]. Angew. Chem. Int. Ed., 2019, 58(24): 8166-8171. doi: 10.1002/anie.201904182http://dx.doi.org/10.1002/anie.201904182
WU W, YANG Y Q, YANG Y, et al. Molecular engineering of an organic NIR-Ⅱ fluorophore with aggregation-induced emission characteristics for in vivo imaging [J]. Small, 2019, 15(20): 1805549-1-10. doi: 10.1002/smll.201805549http://dx.doi.org/10.1002/smll.201805549
刘小春, 李海蓉, 唐会, 等. 近红外二区聚集诱导发光材料在手术导航上的应用 [J]. 发光学报, 2023, 44(4): 717-728. doi: 10.37188/cjl.20220432http://dx.doi.org/10.37188/cjl.20220432
LIU X C, LI H R, TANG H, et al. Application of NIR-Ⅱ aggregation induced emission materials in surgical navigation [J]. Chin. J. Lumin., 2023, 44(4): 717-728. (in Chinese). doi: 10.37188/cjl.20220432http://dx.doi.org/10.37188/cjl.20220432
LI Y Y, CAI Z C, LIU S J, et al. Design of AIEgens for near-infrared Ⅱb imaging through structural modulation at molecular and morphological levels [J]. Nat. Commun., 2020, 11(1): 1255-1-10. doi: 10.1038/s41467-020-15095-1http://dx.doi.org/10.1038/s41467-020-15095-1
FENG Z, BAI S Y, QI J, et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine [J]. Adv. Mater., 2021, 33(17): 2008123-1-12. doi: 10.1002/adma.202008123http://dx.doi.org/10.1002/adma.202008123
SHAO W, CHEN G Y, KUZMIN A, et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window [J]. J. Am. Chem. Soc., 2016, 138(50): 16192-16195. doi: 10.1021/jacs.6b08973http://dx.doi.org/10.1021/jacs.6b08973
ZHANG W M, CHEN T, SU L C, et al. Quantum dot-based sensitization system for boosted photon absorption and enhanced second near-infrared luminescence of lanthanide-doped nanoparticle [J]. Anal. Chem., 2020, 92(8): 6094-6102. doi: 10.1021/acs.analchem.0c00529http://dx.doi.org/10.1021/acs.analchem.0c00529
AFSHARI M J, LI C, ZENG J F, et al. Self-illuminating NIR-Ⅱ bioluminescence imaging probe based on silver sulfide quantum dots [J]. ACS Nano, 2022, 16(10): 16824-16832. doi: 10.1021/acsnano.2c06667http://dx.doi.org/10.1021/acsnano.2c06667
JIANG M Y, LIU H R, ZENG S J, et al. A general in situ growth strategy of designing theranostic NaLnF4@Cu2-xS nanoplatform for in vivo NIR‐Ⅱ optical imaging beyond 1 500 nm and photothermal therapy [J]. Adv. Therap., 2019, 2(6): 1800153. doi: 10.1002/adtp.201800153http://dx.doi.org/10.1002/adtp.201800153
LI Y B, ZENG S J, HAO J H. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1 500 nm [J]. ACS Nano, 2019, 13(1): 248-259. doi: 10.1021/acsnano.8b05431http://dx.doi.org/10.1021/acsnano.8b05431
DIAO S, BLACKBURN J L, HONG G S, et al. Fluorescence imaging in vivo at wavelengths beyond 1 500 nm [J]. Angew. Chem. Int. Ed., 2015, 54(49): 14758-14762. doi: 10.1002/anie.201507473http://dx.doi.org/10.1002/anie.201507473
DENG Z M, LI X L, XUE Z L, et al. A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1 500 nm [J]. Nanoscale, 2018, 10(19): 9393-9400. doi: 10.1039/c8nr00305jhttp://dx.doi.org/10.1039/c8nr00305j
LI Y Y, FAN X X, LI Y R, et al. Molecular crystal engineering of organic chromophores for NIR-Ⅱ fluorescence quantification of cerebrovascular function [J]. ACS Nano, 2022, 16(2): 3323-3331. doi: 10.1021/acsnano.1c11424http://dx.doi.org/10.1021/acsnano.1c11424
LIU H L, HONG G S, LUO Z T, et al. Atomic-precision gold clusters for NIR-Ⅱ imaging [J]. Adv. Mater., 2019, 31(46): 1901015-1-9. doi: 10.1002/adma.201901015http://dx.doi.org/10.1002/adma.201901015
LI S L, DENG Q Y, LI X, et al. Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy [J]. Biomaterials, 2019, 216: 119252-1-8. doi: 10.1016/j.biomaterials.2019.119252http://dx.doi.org/10.1016/j.biomaterials.2019.119252
盛宗海, 李三清, 胡德红, 等. 功能化纳米探针用于脑胶质瘤精准诊疗研究进展 [J]. 集成技术, 2020, 9(1): 1-11. doi: 10.12146/j.issn.2095-3135.20191013001http://dx.doi.org/10.12146/j.issn.2095-3135.20191013001
SHENG Z H, LI S Q, HU D H, et al. Recent advances of functional nanoprobes for precision diagnosis and therapy of glioma [J]. J. Integr. Technol., 2020, 9(1): 1-11. doi: 10.12146/j.issn.2095-3135.20191013001http://dx.doi.org/10.12146/j.issn.2095-3135.20191013001
WANG S C, SHI H, WANG L S, et al. Photostable small-molecule NIR-Ⅱ fluorescent scaffolds that cross the blood-brain barrier for noninvasive brain imaging [J]. J. Am. Chem. Soc., 2022, 144(51): 23668-23676. doi: 10.1021/jacs.2c11223http://dx.doi.org/10.1021/jacs.2c11223
ZHU H Q, REN F, WANG T T, et al. Targeted immunoimaging of tumor-associated macrophages in orthotopic glioblastoma by the NIR-Ⅱb nanoprobes [J]. Small, 2022, 18(30): 2202201-1-13. doi: 10.1002/smll.202202201http://dx.doi.org/10.1002/smll.202202201
XUE D Z, CAO Y, WANG Y H, et al. An efficient reactive oxygen species/reactive nitrogen species generator for dual imaging-guided orthotopic glioblastoma therapy through intrathecal delivery [J]. Nano Today, 2023, 50: 101886. doi: 10.1016/j.nantod.2023.101886http://dx.doi.org/10.1016/j.nantod.2023.101886
LI Z, ZHAO C Y, FU Q R, et al. Neodymium (3+)-coordinated black phosphorus quantum dots with retrievable NIR/X-ray optoelectronic switching effect for anti-glioblastoma [J]. Small, 2022, 18(5): 2105160-1-10. doi: 10.1002/smll.202105160http://dx.doi.org/10.1002/smll.202105160
YIN N, WANG Y H, CAO Y, et al. A biodegradable nanocapsule for through-skull NIR-Ⅱ fluorescence imaging/magnetic resonance imaging and selectively enhanced radio-chemotherapy for orthotopic glioma [J]. Nano Today, 2022, 46: 101619-1-12. doi: 10.1016/j.nantod.2022.101619http://dx.doi.org/10.1016/j.nantod.2022.101619
ZHANG J, HAN L L, WU H G, et al. A brain-targeting NIR-Ⅱ ferroptosis system: effective visualization and oncotherapy for orthotopic glioblastoma [J]. Adv. Sci., 2023, 10(13): 2206333-1-11. doi: 10.1002/advs.202370080http://dx.doi.org/10.1002/advs.202370080
ZHAN Y, LING S S, HUANG H Y, et al. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-Ⅱ nanoprobe [J]. Angew. Chem. Int. Ed., 2021, 60(5): 2637-2642. doi: 10.1002/anie.202011903http://dx.doi.org/10.1002/anie.202011903
LI C Y, LI W F, LIU H H, et al. An activatable NIR-Ⅱ nanoprobe for in vivo early real-time diagnosis of traumatic brain injury [J]. Angew. Chem. Int. Ed., 2020, 59(1): 247-252. doi: 10.1002/anie.201911803http://dx.doi.org/10.1002/anie.201911803
HUANG B, TANG T, CHEN S H, et al. Near-infrared-Ⅱb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury [J]. Nat. Commun., 2023, 14(1): 197. doi: 10.1038/s41467-023-35868-8http://dx.doi.org/10.1038/s41467-023-35868-8
ZHOU J, JANGILI P, SON S, et al. Fluorescent diagnostic probes in neurodegenerative diseases [J]. Adv. Mater., 2020, 32(51): 2001945-1-43. doi: 10.1002/adma.202001945http://dx.doi.org/10.1002/adma.202001945
LI H D, WANG J Y, LI Y F, et al. Detection of Aβ oligomers in early Alzheimer’s disease diagnose by in vivo NIR-Ⅱ fluorescence imaging [J]. Sens. Actuators B: Chem., 2022, 358: 131481. doi: 10.1016/j.snb.2022.131481http://dx.doi.org/10.1016/j.snb.2022.131481
MIAO J, MIAO M Q, JIANG Y, et al. An activatable NIR-Ⅱ fluorescent reporter for in vivo imaging of amyloid-β plaques [J]. Angew. Chem. Int. Ed., 2023, 62(7): e202216351-1-9. doi: 10.1002/anie.202216351http://dx.doi.org/10.1002/anie.202216351
0
Views
230
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution