浏览全部资源
扫码关注微信
南京邮电大学 有机电子与信息显示国家重点实验室&先进材料研究院, 江苏 南京 210023
Published:05 September 2023,
Received:06 May 2023,
Revised:15 May 2023,
扫 描 看 全 文
张康杰,闫伟博,辛颢.苯乙胺钝化钙钛矿埋底界面提高太阳能电池性能[J].发光学报,2023,44(09):1636-1643.
ZHANG Kangjie,YAN Weibo,XIN Hao.Passivation of Perovskite Buried-interface Using Phenethylamine for Enhanced Solar Cell Performance[J].Chinese Journal of Luminescence,2023,44(09):1636-1643.
张康杰,闫伟博,辛颢.苯乙胺钝化钙钛矿埋底界面提高太阳能电池性能[J].发光学报,2023,44(09):1636-1643. DOI: 10.37188/CJL.20230120.
ZHANG Kangjie,YAN Weibo,XIN Hao.Passivation of Perovskite Buried-interface Using Phenethylamine for Enhanced Solar Cell Performance[J].Chinese Journal of Luminescence,2023,44(09):1636-1643. DOI: 10.37188/CJL.20230120.
采用有机小分子钝化钙钛矿下表面(埋底界面)可以有效抑制钙钛矿埋底界面缺陷形成,降低载流子复合几率。本工作通过预先沉积钝化分子苯乙胺(PEA)的方法来钝化钙钛矿埋底界面。钝化后的钙钛矿晶粒大小与表面形貌无明显变化,吸收边和发光波长稍有红移,最高分子占据轨道能级略有提高。“Pb”元素结合能向高能级移动,而“N”元素结合能向低能级移动,并且钙钛矿中PbI
2
的残留量明显减少,表明钝化分子PEA通过“N”原子与钙钛矿下表面悬挂的“Pb”以及残留PbI
2
相互作用。基于PEA钝化的钙钛矿电池的开路电压、短路电流密度、填充因子和转换效率分别从1.041 V、21.29 mA/cm
2
、74.09%和16.41%提高到1.102 V、22.44 mA/cm
2
、79.28%和19.6%。器件性能的显著提高主要由于载流子的复合降低,归因于:(1)PEA钝化未饱和配位“Pb”引起的缺陷;(2)PEA钝化卤化铅微晶组成的复杂相引起的缺陷;(3)钙钛矿与空穴传输层之间的电荷转移速率的提高。钝化的钙钛矿电池器件稳定性明显增强。这种简便、有效的埋底界面钝化策略可以应用于未来大面积钙钛矿太阳能电池的制备。
Passivation of the lower surface (buried interface) of perovskite using organic small molecules is an effective strategy to suppress carrier recombination. This work focuses on passivation of the buried interface of perovskite by pre-coating the passivation material of phenylethylamine (PEA) before depositing the perovskite film. After passivation treatment, the grain size and morphology of the perovskite crystalline film did not change. After passivation, there is a slight red-shift in the absorption edge and emission wavelength of perovskite, and a slight increase in the energy level of highest occupied molecular orbital. “Pb” binding energy moves to a higher level, while “N” binding energy moves to a lower level. These results confirm that the “N” atoms on PEA molecules can interact with the dangling “Pb” at the buried interface of perovskite. The results showed a significant reduction of residual PbI
2
in perovskite, indicating that PEA molecules reacted with PbI
2
to form a certain complex. Furthermore, the solar cells were fabricated to investigate the passivation effect and the results showed that the open-circuit voltage (
V
oc
), short-circuit current density(
J
sc
), fill factor(FF) and power conversion Efficiency(PCE) of the control perovskite solar cells were 1.041 V, 21.29 mA/cm
2
, 74.09%, and 16.41%, which for PEA-passivated perovskite solar cells, increased to 1.102 V, 22.44 mA/cm
2
, 79.28%, and 19.6%, respectively. The significant improvement of device performance induced by passivation of perovskite buried-interface defects is mainly due to the reduction of carrier recombination which mainly attributed to passivation of the defects caused by unsaturated-coordination “Pb”, passivation of the defects caused by the complex phases of PbI
2
microcrystals, and improvement of the charge transfer rate between perovskite and the hole-transporting layer. The stability of passivated perovskite solar cells is significantly enhanced. This simple and effective buried-interface passivation strategy can be applied to the fabrication of large-scale perovskite solar cells in the future.
能量传递钙钛矿埋底界面苯乙胺钝化太阳能电池
perovskiteburied interfacephenethylaminepassivationsolar cells
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides [J]. Nature, 2023, 616(7958): 724-730. doi: 10.1038/s41586-023-05825-yhttp://dx.doi.org/10.1038/s41586-023-05825-y
RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells [J]. Science, 2018, 361(6408): eaat8235-1-7. doi: 10.1126/science.aat8235http://dx.doi.org/10.1126/science.aat8235
WANG P, WU Y H, CAI B, et al. Solution-processable perovskite solar cells toward commercialization: progress and challenges [J]. Adv. Funct. Mater., 2019, 29(47): 1807661-1-37. doi: 10.1002/adfm.201807661http://dx.doi.org/10.1002/adfm.201807661
LUO X H, LIN X S, GAO F, et al. Recent progress in perovskite solar cells: from device to commercialization [J]. Sci. China Chem., 2022, 65(12): 2369-2416. doi: 10.1007/s11426-022-1426-xhttp://dx.doi.org/10.1007/s11426-022-1426-x
WOJCIECHOWSKI K, FORGÁCS D. Commercial applications of indoor photovoltaics based on flexible perovskite solar cells [J]. ACS Energy Lett., 2022, 7(10): 3729-3733. doi: 10.1021/acsenergylett.2c01976http://dx.doi.org/10.1021/acsenergylett.2c01976
CAI B, MA Y Z, YANG B, et al. A new descriptor for complicated effects of electronic density of states on ion migration [J]. Adv. Funct. Mater., 2023, doi: 10.1002/adfm.202300445http://dx.doi.org/10.1002/adfm.202300445.
于超, 陈琛, 吴丹, 等. 喷墨打印钙钛矿光电器件的研究进展 [J]. 液晶与显示, 2021, 36(1): 159-175. doi: 10.37188/CJLCD.2020-0262http://dx.doi.org/10.37188/CJLCD.2020-0262
YU C, CHEN C, WU D, et al. Research progress of inkjet printed perovskite optoelectronic devices [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 158-175. (in Chinese). doi: 10.37188/CJLCD.2020-0262http://dx.doi.org/10.37188/CJLCD.2020-0262
陈捷达, 李东栋, 朱绪飞, 等. 柔性钙钛矿电池的机械稳定性提升策略 [J]. 光学 精密工程, 2022, 30(19): 2332-2352. doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
CHEN J D, LI D D, ZHU X F, et al. Strategy of improving mechanical stability of flexible perovskite solar cells [J]. Opt. Precision Eng., 2022, 30(19): 2332-2352. (in Chinese). doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
朱云飞, 赵雪帆, 王成麟, 等. 赝卤素阴离子工程在钙钛矿太阳能电池中的应用研究进展 [J]. 发光学报, 2023, 44(4): 579-597. doi: 10.37188/cjl.20220365http://dx.doi.org/10.37188/cjl.20220365
ZHU Y F, ZHAO X F, WANG C L, et al. Research progress on application of pseudo-halide anion engineering in perovskite solar cells [J]. Chin. J. Lumin., 2023, 44(4): 579-597. (in Chinese). doi: 10.37188/cjl.20220365http://dx.doi.org/10.37188/cjl.20220365
LIN X S, CUI D Y, LUO X H, et al. Efficiency progress of inverted perovskite solar cells [J]. Energy Environ. Sci., 2020, 13(11): 3823-3847. doi: 10.1039/d0ee02017fhttp://dx.doi.org/10.1039/d0ee02017f
CHEN P, BAI Y, WANG L Z. Minimizing voltage losses in perovskite solar cells [J]. Small Struct., 2020, 2(1): 2000050-1-14. doi: 10.1002/sstr.202000050http://dx.doi.org/10.1002/sstr.202000050
FU L, LI H, WANG L, et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance [J]. Energy Environ. Sci., 2020, 13(11): 4017-4056. doi: 10.1039/d0ee01767ahttp://dx.doi.org/10.1039/d0ee01767a
BUIN A, PIETSCH P, XU J X, et al. Materials processing routes to trap-free halide perovskites [J]. Nano Lett., 2014, 14(11): 6281-6286. doi: 10.1021/nl502612mhttp://dx.doi.org/10.1021/nl502612m
ONO L K, LIU S Z, QI Y B. Reducing detrimental defects for high-performance metal halide perovskite solar cells [J]. Angew. Chem. Int. Ed., 2020, 59(17): 6676-6698. doi: 10.1002/anie.201905521http://dx.doi.org/10.1002/anie.201905521
LIU S, GUAN Y J, SHENG Y S, et al. A review on additives for halide perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(13): 1902492-1-28. doi: 10.1002/aenm.201902492http://dx.doi.org/10.1002/aenm.201902492
KE W J, XIAO C X, WANG C L, et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells [J]. Adv. Mater., 2016, 28(26): 5214-5221. doi: 10.1002/adma.201600594http://dx.doi.org/10.1002/adma.201600594
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460-466. doi: 10.1038/s41566-019-0398-2http://dx.doi.org/10.1038/s41566-019-0398-2
ZHUANG J, MAO P, LUAN Y G, et al. Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide [J]. ACS Energy Lett., 2019, 4(12): 2913-2921. doi: 10.1021/acsenergylett.9b02375http://dx.doi.org/10.1021/acsenergylett.9b02375
WANG T, FU Y P, JIN L R, et al. Phenethylammonium functionalization enhances near-surface carrier diffusion in hybrid perovskites [J]. J. Am. Chem. Soc., 2020, 142(38): 16254-16264. doi: 10.1021/jacs.0c04377http://dx.doi.org/10.1021/jacs.0c04377
ZHANG Y, LI Y, ZHANG L, et al. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells [J]. Adv. Energy Mater., 2021, 11(47): 2102538-1-10. doi: 10.1002/aenm.202102538http://dx.doi.org/10.1002/aenm.202102538
ZHANG K C, SPÄTH A, ALMORA O, et al. Suppressing nonradiative recombination in lead-tin perovskite solar cells through bulk and surface passivation to reduce open circuit voltage losses [J]. ACS Energy Lett., 2022, 7(10): 3235-3243. doi: 10.1021/acsenergylett.2c01605http://dx.doi.org/10.1021/acsenergylett.2c01605
LI G D, SONG J, WU J H, et al. Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface [J]. ACS Energy Lett., 2021, 6(10): 3614-3623. doi: 10.1021/acsenergylett.1c01649http://dx.doi.org/10.1021/acsenergylett.1c01649
YANG X Y, LUO D Y, XIANG Y R, et al. Buried interfaces in halide perovskite photovoltaics [J]. Adv. Mater., 2021, 33(7): 2006435-1-10. doi: 10.1002/adma.202006435http://dx.doi.org/10.1002/adma.202006435
CHEN S S, XIAO X, CHEN B, et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? [J]. Sci. Adv., 2021, 7(4): eabb2412-1-9. doi: 10.1126/sciadv.abb2412http://dx.doi.org/10.1126/sciadv.abb2412
CHEN B, CHEN H, HOU Y, et al. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers [J]. Adv. Mater., 2021, 33(41): 2103394-1-8. doi: 10.1002/adma.202103394http://dx.doi.org/10.1002/adma.202103394
YIN X, ZHAI J F, DU P F, et al. 3D NiO nanowall hole-transporting layer for the passivation of interfacial contact in inverted perovskite solar cells [J]. ChemSusChem, 2020, 13(5): 1006-1012. doi: 10.1002/cssc.201903025http://dx.doi.org/10.1002/cssc.201903025
YAN W B, HE Z X, JIANG J J, et al. Highly thermal-stable perylene-bisimide small molecules as efficient electron-transport materials for perovskite solar cells [J]. J. Mater. Chem. C, 2020, 8(42): 14773-14781. doi: 10.1039/d0tc04241bhttp://dx.doi.org/10.1039/d0tc04241b
ZHU Z L, BAI Y, ZHANG T, et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells [J]. Angew. Chem. Int. Ed., 2014, 53(46): 12571-12575. doi: 10.1002/ange.201405176http://dx.doi.org/10.1002/ange.201405176
XIONG Z H, LAN L K, WANG Y Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23% [J]. ACS Energy Lett., 2021, 6(11): 3824-3830. doi: 10.1021/acsenergylett.1c01763http://dx.doi.org/10.1021/acsenergylett.1c01763
LI F Z, DENG X, QI F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency [J]. J. Am. Chem. Soc., 2020, 142(47): 20134-20142. doi: 10.1021/jacs.0c09845http://dx.doi.org/10.1021/jacs.0c09845
YAN W B, YANG W S, ZHANG K J, et al. Enhancing performance and stability of perovskite solar cells through surface defect passivation with organic bidentate lewis bases [J]. ACS Omega, 2022, 7(36): 32383-32392. doi: 10.1021/acsomega.2c03802http://dx.doi.org/10.1021/acsomega.2c03802
LIU Y N, DUAN J J, ZHANG J K, et al. High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide-modified interface of NiOx and perovskite layers [J]. ACS Appl. Mater. Interfaces, 2020, 12(1): 771-779. doi: 10.1021/acsami.9b18217http://dx.doi.org/10.1021/acsami.9b18217
WANG D, GUO H L, WU X, et al. Interfacial engineering of wide-bandgap perovskites for efficient perovskite/CZTSSe tandem solar cells [J]. Adv. Funct. Mater., 2021, 32(2): 2107359-1-9. doi: 10.1002/adfm.202107359http://dx.doi.org/10.1002/adfm.202107359
0
Views
131
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution