浏览全部资源
扫码关注微信
1.中国科学技术大学 中国科学院微观磁共振实验室, 安徽 合肥 230026
2.中国科学技术大学物理学院 物理系, 安徽 合肥 230026
Published:05 July 2023,
Received:20 April 2023,
Revised:06 May 2023,
移动端阅览
陈巧玲,景伟国,尚龙兵等.固体中过渡金属离子占位、价态及光谱性质的第一性原理研究[J].发光学报,2023,44(07):1220-1238.
CHEN Qiaoling,JING Weiguo,SHANG Longbing,et al.First-principles Calculations on Site Occupancy, Valence State and Luminescent Properties of Transition Metal Activators in Solids[J].Chinese Journal of Luminescence,2023,44(07):1220-1238.
陈巧玲,景伟国,尚龙兵等.固体中过渡金属离子占位、价态及光谱性质的第一性原理研究[J].发光学报,2023,44(07):1220-1238. DOI: 10.37188/CJL.20230102.
CHEN Qiaoling,JING Weiguo,SHANG Longbing,et al.First-principles Calculations on Site Occupancy, Valence State and Luminescent Properties of Transition Metal Activators in Solids[J].Chinese Journal of Luminescence,2023,44(07):1220-1238. DOI: 10.37188/CJL.20230102.
过渡金属(TM)激活离子由于在近红外发光、红外激光、荧光转化的白光LED、荧光温度计、余辉发光等方面的优异性能和应用潜力而被广泛研究。TM离子在固体中可占据八配位、六配位、四配位等多种配位格位,可呈现多种价态且光跃迁性质强烈依赖于晶体环境,因此TM离子在固体中的发光中心确定、发光机理理解和性能预测存在困难。本文通过第一性原理计算探索固体中TM离子的热力学和光跃迁性质。内容包括:通过对各种化学氛围下形成能的计算结果,分析基质的本征缺陷以及TM离子占位、价态、分布和浓度;理解不同晶体环境中TM离子的各激发态和能级结构;构建位形坐标图分析激发、弛豫、发射及猝灭过程;提出通过合成氛围、共存条件和离子共掺等方式调控或优化TM离子的占位、价态和光跃迁的方案。本文以若干具有代表性的体系为依托,展示了如何运用第一性原理计算手段进行掺TM离子固体发光材料的研究。具体所涉及的代表体系和研究内容为:Ti∶Al
2
O
3
激光晶体中红外残余吸收机理及其减弱或尽可能消除的方法,典型尖晶石和石榴石基质中Mn
2+
、Mn
3+
、Mn
4+
的占位和激发、弛豫、发射等光跃迁性质,固溶氧化物基质中铬离子的占位、价态及相应的光跃迁性质等,表明第一性原理计算可用于发光材料的机理研究、理性设计和优化。
Transition metal (TM) activators have been widely studied for their extraordinary optoelectronic properties and great potential application in near-infrared luminescence or persistent luminescence, infrared laser, phosphor-converted white light-emitting diodes, luminescence thermometry and so on. However, due to the multiple valence states and multiple site occupancies, and the strongly local-environment-dependent optical properties, it is challenging to determine the sites and valences of the luminescent center, to decipher the luminescent mechanisms and to predict the photoluminescence properties of TM activators in solids. Here, first-principles calculations have been performed to study the thermodynamic and optical properties of TM ions in solids. The defect formation energies are calculated to analyze the effects of intrinsic defects and the site occupancies, valence states, distribution and concentration of TM ions in host. The local environment dependent luminescence is analyzed by calculating the excited-state energy levels of TM activators in various lattice environment. The configuration coordinate diagrams are constructed to analyze the excitation, relaxation and emission processes. Then, a theoretical scheme is proposed to regulate the site-occupancy, valence states and optical transitions of TM ions in solids
via
tuning the sintering atmosphere, coexistence conditions, and especially co-doping impurities. We select several typical systems to show the rationality and effectiveness of first-principles calculations, which include the mechanisms of residual infrared absorption in Ti∶Al
2
O
3
crystal and the method of mitigating or eliminating the infrared absorption, the site occupancies and optical transitions of Mn
2+
,Mn
3+
,Mn
4+
in typical spinel and garnet hosts, the site occupancies, valence states and optical transitions of Cr
3+/4+
ions in oxide compounds. The results show that first-principles calculations form effective approaches for elucidating the multi-site and multi-valence nature of TM ions in solids and predicting their optical transitions, which are beneficial for the rational design and optimization of related optical materials.
过渡金属离子光跃迁第一性原理计算
transition metal ionsoptical transitionsfirst-principles calculation
LIU G C, MOLOKEEV M S, XIA Z G. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability [J]. Chem. Mater., 2022, 34(3): 1376-1384. doi: 10.1021/acs.chemmater.1c04131http://dx.doi.org/10.1021/acs.chemmater.1c04131
MAO Q N, LAN B J, WANG H, et al. Mid-infrared luminesce of ZnS∶Cr2+-glass composite and fiber [J]. J. Am. Ceram. Soc., 2020, 103(2): 993-998. doi: 10.1111/jace.16826http://dx.doi.org/10.1111/jace.16826
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review [J]. J. Mater. Chem. C, 2018, 6(11): 2652-2671. doi: 10.1039/c8tc00251ghttp://dx.doi.org/10.1039/c8tc00251g
MARCINIAK L, KNIEC K, ELŻBIECIAK-PIECKA K, et al. Luminescence thermometry with transition metal ions. A review [J]. Coord. Chem. Rev., 2022, 469: 214671-1-32. doi: 10.1016/j.ccr.2022.214671http://dx.doi.org/10.1016/j.ccr.2022.214671
HE S S, QIANG Q P, LANG T C, et al. Highly stable orange-red long-persistent luminescent CsCdCl3∶Mn2+ perovskite crystal [J]. Angew. Chem. Int. Ed., 2022, 61(48): e202208937. doi: 10.1002/anie.202208937http://dx.doi.org/10.1002/anie.202208937
FENG X, LIN L T, DUAN R, et al. Transition metal ion activated near-infrared luminescent materials [J]. Prog. Mater. Sci., 2022, 129: 100973. doi: 10.1016/j.pmatsci.2022.100973http://dx.doi.org/10.1016/j.pmatsci.2022.100973
LIU G C, XIA Z G. Modulation of thermally stable photoluminescence in Cr3+-based near-infrared phosphors [J]. J. Phys. Chem. Lett., 2022, 13(22): 5001-5008. doi: 10.1021/acs.jpclett.2c01143http://dx.doi.org/10.1021/acs.jpclett.2c01143
DANG P P, WEI Y, LIU D J, et al. Recent advances in chromium-doped near-infrared luminescent materials: fundamentals, optimization strategies, and applications [J]. Adv. Opt. Mater., 2023, 11(3): 2201739-1-27. doi: 10.1002/adom.202201739http://dx.doi.org/10.1002/adom.202201739
MIROV S, FEDOROV V, MOSKALEV I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials [J]. Laser Photonics Rev., 2010, 4(1): 21-41. doi: 10.1002/lpor.200810076http://dx.doi.org/10.1002/lpor.200810076
HUANG D Y, OUYANG Q Y, LIU B, et al. Mn2+/Mn4+ co-doped LaM1-xAl11-yO19 (M = Mg, Zn) luminescent materials: electronic structure, energy transfer and optical thermometric properties [J]. Dalton Trans., 2021, 50(13): 4651-4662. doi: 10.1039/d1dt00153ahttp://dx.doi.org/10.1039/d1dt00153a
HUANG F, CHEN D Q. Synthesis of Mn2+∶Zn2SiO4-Eu3+∶Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions [J]. J. Mater. Chem. C, 2017, 5(21): 5176-5182. doi: 10.1039/c7tc01500chttp://dx.doi.org/10.1039/c7tc01500c
WADHWA A, WANG C J, WANG C H, et al. Multi-phase glass-ceramics containing CaF2∶Er3+ and ZnAl2O4∶Cr3+ nanocrystals for optical temperature sensing [J]. J. Am. Ceram. Soc., 2019, 102(5): 2472-2481.
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review [J]. J. Lumin., 2018, 202: 263-281. doi: 10.1016/j.jlumin.2018.05.053http://dx.doi.org/10.1016/j.jlumin.2018.05.053
ADACHI S. Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: a review [J]. J. Lumin., 2018, 197: 119-130. doi: 10.1016/j.jlumin.2018.01.016http://dx.doi.org/10.1016/j.jlumin.2018.01.016
SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites: structure, photoluminescence, and application [J]. Laser Photonics Rev., 2021, 15(1): 2000334-1-29. doi: 10.1002/lpor.202000334http://dx.doi.org/10.1002/lpor.202000334
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates [J]. Nat. Mater., 2012, 11(1): 58-63. doi: 10.1038/nmat3173http://dx.doi.org/10.1038/nmat3173
YANG X, CHEN W B, WANG D S, et al. Near-infrared photoluminescence and phosphorescence properties of Cr3+-doped garnet-type Y3Sc2Ga3O12 [J]. J. Lumin., 2020, 225: 117392-1-5. doi: 10.1016/j.jlumin.2020.117392http://dx.doi.org/10.1016/j.jlumin.2020.117392
RAJENDRAN V, FANG M H, HUANG W T, et al. Chromium ion pair luminescence: a strategy in broadband near-infrared light-emitting diode design [J]. J. Am. Chem. Soc., 2021, 143(45): 19058-19066. doi: 10.1021/jacs.1c08334http://dx.doi.org/10.1021/jacs.1c08334
ZOU X K, ZHANG H R, LI W, et al. Ultra-Wide Vis-NIR Mg2Al4Si5O18∶Eu2+,Cr3+ phosphor containing unusual NIR luminescence induced by Cr3+ occupying tetrahedral coordination for hyperspectral imaging [J]. Adv. Opt. Mater., 2022, 10(19): 2200882-1-8. doi: 10.1002/adom.202200882http://dx.doi.org/10.1002/adom.202200882
ZHAO F Y, SONG Z, LIU Q L. Advances in chromium-activated phosphors for near-infrared light sources [J]. Laser Photonics Rev., 2022, 16(11): 2200380. doi: 10.1002/lpor.202200380http://dx.doi.org/10.1002/lpor.202200380
CZAJA M, LISIECKI R, CHROBAK A, et al. The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite [J]. Phys. Chem. Miner., 2018, 45(5): 475-488. doi: 10.1007/s00269-017-0934-xhttp://dx.doi.org/10.1007/s00269-017-0934-x
KÜCK S, HARTUNG S, HURLING S, et al. Optical transitions in Mn3+-doped garnets [J]. Phys. Rev. B, 1998, 57(4): 2203-2216. doi: 10.1103/physrevb.57.2203http://dx.doi.org/10.1103/physrevb.57.2203
ZHANG X W, LI Y, HU Z L, et al. A general strategy for controllable synthesis of Ba3(MO4)2∶Mn5+ (M = V, P) nanoparticles [J]. RSC Adv., 2017, 7(17): 10564-10569. doi: 10.1039/c6ra28225chttp://dx.doi.org/10.1039/c6ra28225c
BRUNOLD T C, GÜDEL H U. Absorption and luminescence spectroscopy of manganese-doped BaSO4 crystals [J]. Chem. Phys. Lett., 1996, 257(1-2): 123-129. doi: 10.1016/0009-2614(96)00507-6http://dx.doi.org/10.1016/0009-2614(96)00507-6
CHENG J G, LI P L, WANG Z J, et al. Color selective manipulation in Li2ZnGe3O8∶Mn2+ by multiple-cation substitution on different crystal-sites [J]. Dalton Trans., 2018, 47(12): 4293-4300. doi: 10.1039/c7dt04552bhttp://dx.doi.org/10.1039/c7dt04552b
CHEN H M, WU L W, BO F, et al. Coexistence of self-reduction from Mn4+ to Mn2+ and elastico-mechanoluminescence in diphase KZn(PO3)3∶Mn2+ [J]. J. Mater. Chem. C, 2019, 7(23): 7096-7103. doi: 10.1039/c9tc01062ahttp://dx.doi.org/10.1039/c9tc01062a
CHEN H M, LEI Y, LI J J, et al. Intense luminescence and good thermal stability in a Mn2+-activated Mg-based phosphor with self-reduction [J]. Inorg. Chem., 2022, 61(14): 5495-5501. doi: 10.1021/acs.inorgchem.1c03741http://dx.doi.org/10.1021/acs.inorgchem.1c03741
张盼, 白宇星, 武莉, 等. 晶格中的缺陷与材料发光性质关系研究进展 [J]. 发光学报, 2022, 43(9): 1361-1379. doi: 10.37188/CJL.20220005http://dx.doi.org/10.37188/CJL.20220005
ZHANG P, BAI Y X, WU L, et al. Advances in relationship between lattice defects and luminescent characteristics [J]. Chin. J. Lumin., 2022, 43(9): 1361-1379. (in Chinese). doi: 10.37188/CJL.20220005http://dx.doi.org/10.37188/CJL.20220005
DONG L P, ZHANG L, JIA Y C, et al. ZnGa2–yAlyO4∶Mn2+,Mn4+ thermochromic phosphors: valence state control and optical temperature sensing [J]. Inorg. Chem., 2020, 59(21): 15969-15976. doi: 10.1021/acs.inorgchem.0c02474http://dx.doi.org/10.1021/acs.inorgchem.0c02474
LIU M Z, KAI H Y, HUANG A J, et al. First-principles and experimental study of trace impurities and near-infrared emission in alkaline earth hexaaluminates [J]. Chem. Mater., 2023, 35(7): 2999-3007. doi: 10.1021/acs.chemmater.3c00305http://dx.doi.org/10.1021/acs.chemmater.3c00305
屈冰雁, 王雷. 3d过渡金属离子在无机化合物中的基态能级及变价趋势理论探索 [J]. 发光学报, 2022, 43(12): 1815-1822. doi: 10.37188/CJL.20220222http://dx.doi.org/10.37188/CJL.20220222
QU B Y, WANG L. Theoretical research on ground state of 3d transition metal ions in inorganic compounds and their charge transition tendencies [J]. Chin. J. Lumin., 2022, 43(12): 1815-1822. (in Chinese). doi: 10.37188/CJL.20220222http://dx.doi.org/10.37188/CJL.20220222
VARLEY J B, JANOTTI A, FRANCHINI C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides [J]. Phys. Rev. B, 2012, 85(8): 081109-1-4. doi: 10.1103/physrevb.85.081109http://dx.doi.org/10.1103/physrevb.85.081109
WESTON L, WICKRAMARATNE D, MACKOIT M, et al. Native point defects and impurities in hexagonal boron nitride [J]. Phys. Rev. B, 2018, 97(21): 214104-1-13. doi: 10.1103/physrevb.97.214104http://dx.doi.org/10.1103/physrevb.97.214104
IVÁDY V, BARCZA G, THIERING G, et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride [J]. npj Comput. Mater., 2020, 6(1): 41-1-6. doi: 10.1038/s41524-020-0305-xhttp://dx.doi.org/10.1038/s41524-020-0305-x
KUMAR P, CREASON T D, FATTAL H, et al. Composition-dependent photoluminescence properties and anti-counterfeiting applications of A2AgX3 (A = Rb, Cs; X = Cl, Br, I) [J]. Adv. Funct. Mater., 2021, 31(48): 2104941-1-9. doi: 10.1002/adfm.202104941http://dx.doi.org/10.1002/adfm.202104941
JOOS J J, VAN DER HEGGEN D, MARTIN L I D J, et al. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence [J]. Nat. Commun., 2020, 11(1): 3647-1-11. doi: 10.1038/s41467-020-17469-xhttp://dx.doi.org/10.1038/s41467-020-17469-x
ATANASOV M, ANDREICI EFTIMIE E L, AVRAM N M, et al. First-principles study of optical absorption energies, ligand field and spin-hamiltonian parameters of Cr3+ ions in emeralds [J]. Inorg. Chem., 2022, 61(1): 178-192. doi: 10.1021/acs.inorgchem.1c02650http://dx.doi.org/10.1021/acs.inorgchem.1c02650
DANIEL C, GONZÁLEZ L, NEESE F. Quantum theory: the challenge of transition metal complexes [J]. Phys. Chem. Chem. Phys., 2021, 23(4): 2533-2534. doi: 10.1039/d0cp90278khttp://dx.doi.org/10.1039/d0cp90278k
FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids [J]. Rev. Mod. Phys., 2014, 86(1): 253-305. doi: 10.1103/revmodphys.86.253http://dx.doi.org/10.1103/revmodphys.86.253
MAKOV G, PAYNE M C. Periodic boundary conditions in ab initio calculations [J]. Phys. Rev. B, 1995, 51(7): 4014-4022. doi: 10.1103/physrevb.51.4014http://dx.doi.org/10.1103/physrevb.51.4014
LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs [J]. Phys. Rev. B, 2008, 78(23): 235104-1-25. doi: 10.1103/physrevb.78.235104http://dx.doi.org/10.1103/physrevb.78.235104
FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Fully ab initio finite-size corrections for charged-defect supercell calculations [J]. Phys. Rev. Lett., 2009, 102(1): 016402-1-4. doi: 10.1103/physrevlett.102.016402http://dx.doi.org/10.1103/physrevlett.102.016402
CHAGAS DA SILVA M, LORKE M, ARADI B, et al. Self-consistent potential correction for charged periodic systems [J]. Phys. Rev. Lett., 2021, 126(7): 076401-1-6. doi: 10.1103/physrevlett.126.076401http://dx.doi.org/10.1103/physrevlett.126.076401
DURRANT T R, MURPHY S T, WATKINS M B, et al. Relation between image charge and potential alignment corrections for charged defects in periodic boundary conditions [J]. J. Chem. Phys., 2018, 149(2): 024103-1-16. doi: 10.1063/1.5029818http://dx.doi.org/10.1063/1.5029818
CHEN Q L, LIU M Z, SHANG L B, et al. Elucidating the multisite and multivalence nature of Mn ions in solids and predicting their optical transition properties: a case study on a series of garnet hosts [J]. Inorg. Chem., 2022, 61(46): 18690-18700. doi: 10.1021/acs.inorgchem.2c03175http://dx.doi.org/10.1021/acs.inorgchem.2c03175
CHEN Q L, SHANG L B, XU H M, et al. Multiple-valence and visible to near-infrared photoluminescence of manganese in ZnGa2O4: a first-principles study [J]. J. Phys. Chem. C, 2021, 125(39): 21780-21790. doi: 10.1021/acs.jpcc.1c07420http://dx.doi.org/10.1021/acs.jpcc.1c07420
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ- nitrides [J]. J. Appl. Phys., 2004, 95(8): 3851-3879. doi: 10.1063/1.1682673http://dx.doi.org/10.1063/1.1682673
WANG L, MAXISCH T, CEDER G. Oxidation energies of transition metal oxides within the GGA + U framework [J]. Phys. Rev. B, 2006, 73(19): 195107-1-6. doi: 10.1103/physrevb.73.195107http://dx.doi.org/10.1103/physrevb.73.195107
JIA Y C, PONCÉ S, MIGLIO A, et al. Assessment of first-principles and semiempirical methodologies for absorption and emission energies of Ce3+-doped luminescent materials [J]. Adv. Opt. Mater., 2017, 5(7): 1600997. doi: 10.1002/adom.201600997http://dx.doi.org/10.1002/adom.201600997
CHEN Q L, SHANG L B, XU H M, et al. Rationalizing the structural changes and spectra of manganese and their temperature dependence in a series of garnets with first-principles calculations [J]. Phys. Rev. B, 2022, 105(3): 035158. doi: 10.1103/physrevb.105.035158http://dx.doi.org/10.1103/physrevb.105.035158
CHEN Q L, SHANG L B, MA C G, et al. Angular Jahn⁃Teller effect and photoluminescence of the tetrahedral coordinated Mn2+ activators in solids:a first-principles study [J]. Inorg. Chem., 2022, 61(34): 13471-13480. doi: 10.1021/acs.inorgchem.2c01964http://dx.doi.org/10.1021/acs.inorgchem.2c01964
WANG Y P, ZHANG H S, LIN L T, et al. Role of intrinsic defects on the persistent luminescence of pristine and Mn doped ZnGa2O4 [J]. J. Appl. Phys., 2019, 125(9): 095701-1-8. doi: 10.1063/1.5078773http://dx.doi.org/10.1063/1.5078773
PARROT R, BOULANGER D, DIARRA M N, et al. Model for the electronic and vibronic structure of 4T1 levels of d5 ions coupled to E vibrational modes: case of the fluorescent level of Mn2+ in ZnS [J]. Phys. Rev. B, 1996, 54(3): 1662-1672.
SONG E H, JIANG X X, ZHOU Y Y, et al. Heavy Mn2+ doped MgAl2O4 phosphor for high-efficient near-infrared light-emitting diode and the night-vision application [J]. Adv. Opt. Mater., 2019, 7(24): 1901105-1-9. doi: 10.1002/adom.201901105http://dx.doi.org/10.1002/adom.201901105
MENON S G, KUNTI A K, KULKARNI S D, et al. A new microwave approach for the synthesis of green emitting Mn2+-doped ZnAl2O4: a detailed study on its structural and optical properties [J]. J. Lumin., 2020, 226: 117482-1-10. doi: 10.1016/j.jlumin.2020.117482http://dx.doi.org/10.1016/j.jlumin.2020.117482
WANG X J, XIE R J, DIERRE B, et al. A novel and high brightness AlN∶Mn2+ red phosphor for field emission displays [J]. Dalton Trans., 2014, 43(16): 6120-6127. doi: 10.1039/c3dt53532khttp://dx.doi.org/10.1039/c3dt53532k
SONG E H, WANG J L, YU D C, et al. Anomalous tunable visible to near infrared emission in the Mn2+-doped spinel MgGa2O4 and room-temperature upconversion in the Mn2+ and Yb3+-codoped spinel [J]. J. Mater. Chem. C, 2014, 2(41): 8811-8816. doi: 10.1039/c4tc01681ehttp://dx.doi.org/10.1039/c4tc01681e
LANGER D W, RICHTER H J. Zero-phonon lines and phonon coupling of ZnSe∶Mn and CdS∶Mn [J]. Phys. Rev., 1966, 146(2): 554-557. doi: 10.1103/physrev.146.554http://dx.doi.org/10.1103/physrev.146.554
SALEK G, DEVOTI A, LATASTE E, et al. Optical properties versus temperature of Cr-doped γ- and α-Al2O3: irreversible thermal sensors application [J]. J. Lumin., 2016, 179: 189-196. doi: 10.1016/j.jlumin.2016.07.004http://dx.doi.org/10.1016/j.jlumin.2016.07.004
JIA W Y, LIU H M, JAFFE S, et al. Spectroscopy of Cr3+ and Cr4+ ions in forsterite [J]. Phys. Rev. B, 1991, 43(7): 5234-5242. doi: 10.1103/physrevb.43.5234http://dx.doi.org/10.1103/physrevb.43.5234
KATAYAMA Y. Red to near-infrared persistent luminescence in transition metal ion activated phosphors [J]. J. Ceram. Soc. Japan, 2017, 125(11): 793-798. doi: 10.2109/jcersj2.17109http://dx.doi.org/10.2109/jcersj2.17109
CASTELLI F, FORSTER L S. Fluorescence (4T2 → 4A2) and phosphorescence (2E → 4A2) in MgO∶Cr3+ [J]. Phys. Rev. B, 1975, 11(2): 920-928.
SHANG L B, LIU M Z, DUAN C K. Does Cr3+ occupy tetrahedral sites and luminesce in oxides? A first-principles exploration [J]. J. Phys. Chem. Lett., 2022, 13(45): 10635-10641. doi: 10.1021/acs.jpclett.2c02835http://dx.doi.org/10.1021/acs.jpclett.2c02835
QU B Y, ZHOU R L, WANG L, et al. How to predict the location of the defect levels induced by 3d transition metal ions at octahedral sites of aluminate phosphors [J]. J. Mater. Chem. C, 2019, 7(1): 95-103. doi: 10.1039/c8tc05401khttp://dx.doi.org/10.1039/c8tc05401k
QU B Y, LIU M Z, ZHOU R L, et al. The predictability of the ground state of 3dn transition metal ion as luminescent centers in the tetrahedral sites in inorganic compounds [J]. J. Lumin., 2022, 247: 118919-1-5. doi: 10.1016/j.jlumin.2022.118919http://dx.doi.org/10.1016/j.jlumin.2022.118919
JING W G, LIU M Z, WEI X T, et al. Defect levels of 3dn transition-metal series in wide-gap oxide and fluoride insulators: a first-principles study [J]. Phys. Rev. B, 2022, 106: 075110. doi: 10.1103/physrevb.106.075110http://dx.doi.org/10.1103/physrevb.106.075110
ULIVI L, BINI R, LOUBEYRE P, et al. Spectroscopic studies of the Ar(H2)2 compound crystal at high pressure and low temperatures [J]. Phys. Rev. B, 1999, 60(9): 6502-6512. doi: 10.1103/physrevb.60.6502http://dx.doi.org/10.1103/physrevb.60.6502
MEYN J P, DANGER T, PETERMANN K, et al. Spectroscopic characterization of V4+-doped Al2O3 and YAlO3 [J]. J. Lumin., 1993, 55(2): 55-62. doi: 10.1016/0022-2313(93)90009-chttp://dx.doi.org/10.1016/0022-2313(93)90009-c
TIPPINS H H. Charge-transfer spectra of transition-metal ions in corundum [J]. Phys. Rev. B, 1970, 1(1): 126-135. doi: 10.1103/physrevb.1.126http://dx.doi.org/10.1103/physrevb.1.126
WONG W C, MCCLURE D S, BASUN S A, et al. Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons [J]. Phys. Rev. B, 1995, 51(9): 5682-5692. doi: 10.1103/physrevb.51.5682http://dx.doi.org/10.1103/physrevb.51.5682
ZORENKO Y, ZORENKO T, VOZNYAK T, et al. Comparative study of the luminescence of Al2O3∶Ti and Al2O3 crystals under VUV synchrotron radiation excitation [J]. Opt. Mater., 2013, 35(12): 2053-2055. doi: 10.1016/j.optmat.2012.10.044http://dx.doi.org/10.1016/j.optmat.2012.10.044
PUSTOVAROV V A, KORTOV V S, ZVONAREV S V, et al. Luminescent vacuum ultraviolet spectroscopy of Cr3+ ions in nanostructured aluminum oxide [J]. J. Lumin., 2012, 132(11): 2868-2873. doi: 10.1016/j.jlumin.2012.06.001http://dx.doi.org/10.1016/j.jlumin.2012.06.001
ZUNGER A, MALYI O I. Understanding doping of quantum materials [J]. Chem. Rev., 2021, 121(5): 3031-3060. doi: 10.1021/acs.chemrev.0c00608http://dx.doi.org/10.1021/acs.chemrev.0c00608
JING W G, LIU M Z, WEN J, et al. First-principles study of Ti-doped sapphire.Ⅰ. Formation and optical transition properties of titanium pairs [J]. Phys. Rev. B, 2021, 104(16): 165103-1-13. doi: 10.1103/physrevb.104.165103http://dx.doi.org/10.1103/physrevb.104.165103
JING W G, LIU M Z, WEN J, et al. First-principles study of Ti-doped sapphire.Ⅱ. Formation and reduction of complex defects [J]. Phys. Rev. B, 2021, 104(16): 165104-1-13. doi: 10.1103/physrevb.104.165104http://dx.doi.org/10.1103/physrevb.104.165104
DONG L P, ZHANG L, JIA Y C, et al. Site occupation and luminescence of novel orange-red Ca3M2Ge3O12∶Mn2+,Mn4+ (M = Al, Ga) phosphors [J]. ACS Sustainable Chem. Eng., 2020, 8(8): 3357-3366. doi: 10.1021/acssuschemeng.9b07281http://dx.doi.org/10.1021/acssuschemeng.9b07281
CHEN Q, LIU M, MA C, et al. Mechanistic insights on regulating the site occupancy, valence states and optical transitions of Mn ions in yttrium-aluminum garnet via codoping [J]. Phys. Chem. Chem. Phys., 2023,doi: 10.1039/D3CP01548Chttp://dx.doi.org/10.1039/D3CP01548C.
XU Z H, LIN H, HONG R J, et al. Yb3+/Mn2+ co-doped Y3Al5O12 phosphors for optical thermometric application [J]. Opt. Mater., 2022, 124: 111949-1-8. doi: 10.1016/j.optmat.2021.111949http://dx.doi.org/10.1016/j.optmat.2021.111949
CHEN D Q, ZHOU Y, XU W, et al. Enhanced luminescence of Mn4+∶Y3Al5O12 red phosphor via impurity doping [J]. J. Mater. Chem. C, 2016, 4(8): 1704-1712. doi: 10.1039/c5tc04133chttp://dx.doi.org/10.1039/c5tc04133c
ZHOU L, SHEN C Y, SHEN L L, et al. Enhanced luminescence performances of Mn4+∶Y3Al5O12 red phosphor by ions of Rn2+ (Be2+, Mg2+, Sr2+, Ba2+) [J]. J. Alloys Compd., 2018, 769: 686-693. doi: 10.1016/j.jallcom.2018.08.055http://dx.doi.org/10.1016/j.jallcom.2018.08.055
LONG J Q, WANG Y Z, MA R, et al. Enhanced luminescence performances of tunable Lu3-xYxAl5O12∶Mn4+ red phosphor by ions of Rn+ (Li+, Na+, Ca2+, Mg2+, Sr2+, Sc3+) [J]. Inorg. Chem., 2017, 56(6): 3269-3275. doi: 10.1021/acs.inorgchem.6b02647http://dx.doi.org/10.1021/acs.inorgchem.6b02647
SHI Y R, WANG Y H, WEN Y, et al. Tunable luminescence Y3Al5O12∶0.06Ce3+, xMn2+ phosphors with different charge compensators for warm white light emitting diodes [J]. Opt. Express, 2012, 20(19): 21656-21664. doi: 10.1364/oe.20.021656http://dx.doi.org/10.1364/oe.20.021656
JIA Y C, PONCÉ S, MIGLIO A, et al. Beyond the one-dimensional configuration coordinate model of photoluminescence [J]. Phys. Rev. B, 2019, 100(15): 155109-1-11. doi: 10.1103/physrevb.100.155109http://dx.doi.org/10.1103/physrevb.100.155109
JIA Y C, PONCÉ S, MIGLIO A, et al. Design rule for the emission linewidth of Eu2+-activated phosphors [J]. J. Lumin., 2020, 224: 117258-1-5. doi: 10.1016/j.jlumin.2020.117258http://dx.doi.org/10.1016/j.jlumin.2020.117258
JIN Y, GOVONI M, WOLFOWICZ G, et al. Photoluminescence spectra of point defects in semiconductors: validation of first-principles calculations [J]. Phys. Rev. Mater., 2021, 5(8): 084603. doi: 10.1103/physrevmaterials.5.084603http://dx.doi.org/10.1103/physrevmaterials.5.084603
RAZINKOVAS L, DOHERTY M W, MANSON N B, et al. Vibrational and vibronic structure of isolated point defects: the nitrogen-vacancy center in diamond [J]. Phys. Rev. B, 2021, 104(4): 045303-1-19. doi: 10.1103/physrevb.104.045303http://dx.doi.org/10.1103/physrevb.104.045303
MUECHLER L, BADRTDINOV D I, HAMPEL A, et al. Quantum embedding methods for correlated excited states of point defects: case studies and challenges [J]. Phys. Rev. B, 2022, 105(23): 235104-1-19. doi: 10.1103/physrevb.105.235104http://dx.doi.org/10.1103/physrevb.105.235104
0
Views
641
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution