浏览全部资源
扫码关注微信
东北师范大学 紫外光发射材料与技术教育部重点实验室, 吉林 长春 130024
Published:05 July 2023,
Received:17 April 2023,
Revised:09 May 2023,
扫 描 看 全 文
付申成,刘益春.室温全息光谱烧孔:实现路径与研究展望[J].发光学报,2023,44(07):1123-1130.
FU Shencheng,LIU Yichun.Room-temperature Holographic Spectral Hole-burning: Implementation Path and Research Prospect[J].Chinese Journal of Luminescence,2023,44(07):1123-1130.
付申成,刘益春.室温全息光谱烧孔:实现路径与研究展望[J].发光学报,2023,44(07):1123-1130. DOI: 10.37188/CJL.20230086.
FU Shencheng,LIU Yichun.Room-temperature Holographic Spectral Hole-burning: Implementation Path and Research Prospect[J].Chinese Journal of Luminescence,2023,44(07):1123-1130. DOI: 10.37188/CJL.20230086.
光谱烧孔型全息存储因高密度、抗干扰、低能耗的特点而具备了海量“冷数据”存储潜力。本文结合作者的科研经历,首先简要回顾了光谱烧孔的发展历程和存在瓶颈;随后基于等离激元光谱烧孔的基本原理,阐述了过渡金属氧化物/贵金属功能基元室温全息光谱烧孔的新思想;继而展示了作者在大面积全息盘片研制和小型化全息存储器开发方面的最新成果;最后对未来利用功能基元空间序构实现高密度频域全息光谱烧孔进行了展望。作者所在团队的系列工作开辟了高密度光存储的新方向,同时为发展过渡金属氧化物基高集成光电器件提供了有益的思路。
Spectral hole-burning holographic storage has the characteristics of high-density, anti-interference and low-energy-consumption, and has potential ability of storing massive “cold data”. Based on our own research experience, we briefly review the development process and existing bottlenecks of spectral hole-burning. We propose a new idea to achieve room-temperature holographic spectral hole-burning in a functional unit of transition-metal-oxide/noble-metal, which is based on the principle of plasmatic spectral hole-burning. Then we present the latest achievements in large-area holographic discs and compact-type holographic memory devices. We also have a prospect for future work on high-density holographic spectral hole-burning in frequency domain
via
orderly arrangement of functional units. A series of work of the author's group open up a new direction for high-density optical storage, and provide a useful idea for the development of transition-metal-oxide-based optoelectronic devices with high-integration.
光谱烧孔过渡金属氧化物等离激元全息存储
spectral hole-burningtransition-metal-oxideplasmonholographic storage
LYNCH C. How do your data grow? [J]. Nature, 2008, 455(7209): 28-29. doi: 10.1038/455028ahttp://dx.doi.org/10.1038/455028a
PASTORIZA-SANTOS I, KINNEAR C, PÉREZ-JUSTE J, et al. Plasmonic polymer nanocomposites [J]. Nat. Rev. Mater., 2018, 3(10): 375-391. doi: 10.1038/s41578-018-0050-7http://dx.doi.org/10.1038/s41578-018-0050-7
KHARLAMOV B M, PERSONOV R I, BYKOVSKAYA L A. Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation [J]. Opt. Commun., 1974, 12(2): 191-193. doi: 10.1016/0030-4018(74)90388-5http://dx.doi.org/10.1016/0030-4018(74)90388-5
CASTRO G, HAARER D, MACFARLANE R M, et al. Frequency selective optical data storage system: US, 04101976(A) [P]. 1978-07-18.
BRUDER F K, HAGEN R, RÖLLE T, et al. From the surface to volume: concepts for the next generation of optical-holographic data‐storage materials [J]. Angew. Chem. Int. Ed., 2011, 50(20): 4552-4573. doi: 10.1002/anie.201002085http://dx.doi.org/10.1002/anie.201002085
HOLLIDAY K, CROCI M, VAUTHEY E, et al. Spectral hole burning and holography in an Y2SiO5∶Pr3+ crystal [J]. Phys. Rev. B, 1993, 47(22): 14741-14752. doi: 10.1103/physrevb.47.14741http://dx.doi.org/10.1103/physrevb.47.14741
PLAGEMANN B, GRAF F R, ALTNER S B, et al. Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12 000 images [J]. Appl. Phys. B, 1998, 66(1): 67-74. doi: 10.1007/s003400050357http://dx.doi.org/10.1007/s003400050357
KELLER C U. 5 000 by 5 000 spatial by 15 000 spectral resolution elements: first astronomical observations with a novel 3-D detector [C]. Imaging the Universe in Three Dimensions: Astrophyics with Advanced Multi⁃wavelength Imaging Devices, Walnut Creek, 1999: 495-500. doi: 10.2172/15007523http://dx.doi.org/10.2172/15007523
FUJITA K, OHASHI Y, HIRAO K. Room-temperature grating-based morphological hole burning in Sm2+-doped glass powders [J]. Opt. Lett., 2003, 28(7): 567-569. doi: 10.1364/ol.28.000567http://dx.doi.org/10.1364/ol.28.000567
WEI C J, HUANG S H, YU J Q. Two-photon hole burning and fluorescence-line-narrowing studies on BaFCl0.5Br0.5∶Sm2+ at 77 K [J]. J. Lumin., 1989, 43(3): 161-166. doi: 10.1016/0022-2313(89)90012-4http://dx.doi.org/10.1016/0022-2313(89)90012-4
张家骅, 黄世华, 虞家琪. 室温下的永久性光谱烧孔 [J]. 发光学报, 1991, 12(2): 181-182. doi: 10.3321/j.issn:1000-7032.1991.02.014http://dx.doi.org/10.3321/j.issn:1000-7032.1991.02.014
ZHANG J H, HUANG S H, YU J Q. Persistent hole burning at room temperature [J]. Chin. J. Lumin., 1991, 12(2): 181-182. (in Chinese). doi: 10.3321/j.issn:1000-7032.1991.02.014http://dx.doi.org/10.3321/j.issn:1000-7032.1991.02.014
KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107(3): 668-677. doi: 10.1021/jp026731yhttp://dx.doi.org/10.1021/jp026731y
HAN X X, FU S C, ZHANG X T, et al. Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage [J]. Appl. Opt., 2017, 56(28): 7892-7897. doi: 10.1364/ao.56.007892http://dx.doi.org/10.1364/ao.56.007892
FU S C, SUN S Y, ZHANG X T, et al. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films [J]. Appl. Surf. Sci., 2015, 357: 2048-2054. doi: 10.1016/j.apsusc.2015.09.182http://dx.doi.org/10.1016/j.apsusc.2015.09.182
LI N, LI X, ZHANG M Y, et al. Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage [J]. Chin. Phy. B, 2022, 31(3): 036101-1-6. doi: 10.1088/1674-1056/ac20c8http://dx.doi.org/10.1088/1674-1056/ac20c8
FU S C, ZHANG X T, HAN Q, et al. Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory [J]. Sci. Rep., 2016, 6(1): 36701-1-8. doi: 10.1038/srep36701http://dx.doi.org/10.1038/srep36701
LIU S Y, FU S C, ZHANG X T, et al. UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors [J]. Opt. Mater. Express, 2018, 8(5): 1143-1153. doi: 10.1364/ome.8.001143http://dx.doi.org/10.1364/ome.8.001143
WANG X N, FU S C, ZHANG X T, et al. Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction [J]. Opt. Express, 2017, 25(25): 31253-31262. doi: 10.1364/oe.25.031253http://dx.doi.org/10.1364/oe.25.031253
MIAO J Y, FU S C, LI X, et al. Polarization-vortex holographic encryption based on photo-oxidation of a plasmonic disk [J]. Opt. Lett., 2022, 47(16): 4127-4130. doi: 10.1364/ol.465528http://dx.doi.org/10.1364/ol.465528
WANG Y Q, LI X, FU S C, et al. Nondestructive readout of holographic memory in Ag/TiO2 heterojunction via carbon-dots and hydrogel co-modification [J]. Appl. Phys. Lett., 2021, 118(14): 141601-1-5. doi: 10.1063/5.0046810http://dx.doi.org/10.1063/5.0046810
刘益春, 李鑫, 苗景迎, 等. 一种室温光谱烧孔型全息存储器: 中国, 202221513591.9 [P]. 2022-10-04.
LIU Y C, LI X, MIAO J Y, et al. A holographic memory device with room-temperature spectral hole burning capability: CN, 202221513591.9 [P]. 2022-10-04. (in Chinese)
0
Views
277
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution