1.暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
扫 描 看 全 文
XIE Yi, WU Shaohang, GAO Yanyan, et al. Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnO
XIE Yi, WU Shaohang, GAO Yanyan, et al. Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnO
原子层沉积的SnO,x,薄膜具有良好的均匀性和致密性,常被用于提升倒置平面结构钙钛矿太阳能电池的稳定性。而SnO,x,薄膜的特性对器件能量转换效率(Power conversion efficiency,PCE)有着重要影响。本文通过氧源(H,2,O、O,3,)调控SnO,x,薄膜的能级和导电性,提升器件PCE。结果表明,O,3,作为单一氧源的SnO,x,薄膜(记为O,3,‐SnO,x,)具有较优的能级排列;而只有H,2,O作氧源的SnO,x,薄膜(记为H,2,O‐SnO,x,)具有较高的电导率。而采用O,3,和H,2,O混合氧源制备的SnO,x,(记为MIX‐SnO,x,),则兼顾了能级匹配和良好的导电性,有效提升器件的PCE,达到20.9%。不仅如此,得益于SnO,x,薄膜的致密结构,有效避免了外部水氧的入侵和内部材料的分解流失,从而提升了器件稳定性,在85 ℃(氮气气氛)下老化超过646 h仍能维持初始PCE的86%以上。
SnO,x, deposited by atomic layer deposition exhibits uniform and dense nature, which is commonly used to improve the stability of inverted planar perovskite solar cells. Meanwhile, the characteristics of SnO,x, films have an essential impact on power conversion efficiency(PCE) of devices. In this paper, the characteristics of atomic-layer-deposited SnO,x, are adjusted by the oxygen sources(H,2,O, O,3,), including energy level and conductivity, so as to achieve the improvement of PCE of devices. The results show that the SnO,x, film with O,3, as a single oxygen source has good energy level alignment. SnO,x,, which only has water as an oxygen source (denoted H,2,O-SnO,x,), performs higher electrical conductivity. While, taking advantage of mentioned sources, the SnO,x, (denoted as MIX-SnO,x,) not only obtains good energy level alignment, but also excellent conductivity, which effectively improves the PCE of the devices, reaching 20.9%. Moreover, thanks to the denseness of SnO,x, film, it can largely prevent the ingress of moisture into devices, and also inhibit the decomposition of perovskite, dramatically enhancing the stability of perovskite solar cells, which can retain 86% of initial PCE after aging at 85 ℃ (nitrogen atmosphere) for more than 646 h.
钙钛矿太阳能电池原子层沉积氧源调控SnOx
perovskite solar cellsatomic layer depositionoxygen resources adjustmentSnOx
BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics [J]. Chem. Rev., 2018, 119(5): 3418-3451. doi: 10.1021/acs.chemrev.8b00336http://dx.doi.org/10.1021/acs.chemrev.8b00336
ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542-546. doi: 10.1126/science.1254050http://dx.doi.org/10.1126/science.1254050
CHEN W, WU Y Z, YUE Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J]. Science, 2015, 350(6263): 944-948. doi: 10.1126/science.aad1015http://dx.doi.org/10.1126/science.aad1015
ERDENEBILEG E, WANG H, LI J, et al. Low-temperature atomic layer deposited electron transport layers for co-evaporated perovskite solar cells [J]. Solar RRL, 2022, 6(1): 2100842. doi: 10.1002/solr.202100842http://dx.doi.org/10.1002/solr.202100842
SEO S, JEONG S, PARK H, et al. Atomic layer deposition for efficient and stable perovskite solar cells [J]. Chem. Commun., 2019, 55(17): 2403-2416. doi: 10.1039/c8cc09578ghttp://dx.doi.org/10.1039/c8cc09578g
RAIFORD J A, OYAKHIRE S T, BENT S F. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells [J]. Energy Environ. Sci., 2020, 13(7): 1997-2023. doi: 10.1039/d0ee00385ahttp://dx.doi.org/10.1039/d0ee00385a
BRINKMANN K O, ZHAO J, POURDAVOUD N, et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells [J]. Nat. Commun., 2017, 8(1): 13938-1-9. doi: 10.1038/ncomms13938http://dx.doi.org/10.1038/ncomms13938
SEO S, JEONG S, BAE C, et al. Perovskite solar cells with inorganic electron-and hole-transport layers exhibiting long-term (≈500 h) stability at 85 ℃ under continuous 1 sun illumination in ambient air [J]. Adv. Mater., 2018, 30(29): 1801010-1-8. doi: 10.1002/adma.201801010http://dx.doi.org/10.1002/adma.201801010
XIAO K, LIN Y H, ZHANG M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules [J]. Science, 2022, 376(6594): 762-767. doi: 10.1126/science.abn7696http://dx.doi.org/10.1126/science.abn7696
REN N Y, ZHU C J, LI R J, et al. 50 ℃ low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells [J]. Appl. Phys. Lett., 2022, 121(3): 033502-1-7. doi: 10.1063/5.0091311http://dx.doi.org/10.1063/5.0091311
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
CHENG H E, TIAN D C, HUANG K C. Properties of SnO2 films grown by atomic layer deposition [J]. Procedia Eng., 2012, 36: 510-515. doi: 10.1016/j.proeng.2012.03.074http://dx.doi.org/10.1016/j.proeng.2012.03.074
DU X, DU Y, GEORGE S M. In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques [J]. J. Vac. Sci. Technol. A, 2005, 23(4): 581-588. doi: 10.1116/1.1914810http://dx.doi.org/10.1116/1.1914810
ELAM J W, BAKER D A, HRYN A J, et al. Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin [J]. J. Vac. Sci. Technol. A, 2008, 26(2): 244-252. doi: 10.1116/1.2835087http://dx.doi.org/10.1116/1.2835087
HU T, BECKER T, POURDAVOUD N, et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers [J]. Adv. Mater., 2017, 29(27): 1606656-1-9. doi: 10.1002/adma.201606656http://dx.doi.org/10.1002/adma.201606656
LEE J H, YOO M, KANG D H, et al. Selective SnOx atomic layer deposition driven by oxygen reactants [J]. ACS Appl. Mater. Interfaces, 2018, 10(39): 33335-33342. doi: 10.1021/acsami.8b12251http://dx.doi.org/10.1021/acsami.8b12251
MULLINGS M N, HÄGGLUND C, BENT S F. Tin oxide atomic layer deposition from tetrakis (dimethylamino) tin and water [J]. J. Vac. Sci. Technol. A, 2013, 31(6): 061503-1-8. doi: 10.1116/1.4812717http://dx.doi.org/10.1116/1.4812717
MACKUS A J M, MACISAAC C, KIM W H, et al. Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide [J]. J. Chem. Phys., 2017, 146(5): 052802-1-11. doi: 10.1063/1.4961459http://dx.doi.org/10.1063/1.4961459
CHOI D W, MAENG W J, PARK J S. The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics [J]. Appl. Surf. Sci., 2014, 313: 585-590. doi: 10.1016/j.apsusc.2014.06.027http://dx.doi.org/10.1016/j.apsusc.2014.06.027
CHOI D W, PARK J S. Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant [J]. Surf. Coat. Technol., 2014, 259: 238-243. doi: 10.1016/j.surfcoat.2014.02.012http://dx.doi.org/10.1016/j.surfcoat.2014.02.012
LI F M, SHEN Z T, WENG Y J, et al. Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability [J]. Adv. Funct. Mater., 2020, 30(45): 2004933-1-9. doi: 10.1002/adfm.202004933http://dx.doi.org/10.1002/adfm.202004933
LEE M, KIM D, LEE Y K, et al. Indene-C60 bisadduct electron-transporting material with the high LUMO level enhances open-circuit voltage and efficiency of tin-based perovskite solar cells [J]. ACS Appl. Energy Mater., 2020, 3(6): 5581-5588. doi: 10.1021/acsaem.0c00535http://dx.doi.org/10.1021/acsaem.0c00535
XU C Q, ZHANG Y W, LUO P F, et al. Comparative study on TiO2 and C60 electron transport layers for efficient perovskite solar cells [J]. ACS Appl. Energy Mater., 2021, 4(6): 5543-5553. doi: 10.1021/acsaem.1c00226http://dx.doi.org/10.1021/acsaem.1c00226
MACCO B, WU Y, VANHEMEL D, et al. High mobility In2O3∶H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization [J]. Phys. Status Solidi (RRL)‐Rapid Res. Lett., 2014, 8(12): 987-990. doi: 10.1002/pssr.201409426http://dx.doi.org/10.1002/pssr.201409426
KOIDA T, SAI H, KONDO M. In2O3∶H transparent conductive oxide films with high mobility and near infrared transparency for optoelectronic applications [J]. Surf. Eng., 2012, 28(2): 102-107. doi: 10.1179/1743294411y.0000000053http://dx.doi.org/10.1179/1743294411y.0000000053
SUCKOW S. 2/3-Diode Fit [EB/OL]. 2014-12-03. https://nanohub.org/resources/14300https://nanohub.org/resources/14300.
BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323-356. doi: 10.1039/c5ee02733khttp://dx.doi.org/10.1039/c5ee02733k
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Adv. Energy Mater., 2015, 5(15): 1500477-1-8. doi: 10.1002/aenm.201500477http://dx.doi.org/10.1002/aenm.201500477
DUNFIELD S P, BLISS L, ZHANG F, et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules [J]. Adv. Energy Mater., 2020, 10(26): 1904054-1-35. doi: 10.1002/aenm.201904054http://dx.doi.org/10.1002/aenm.201904054
0
Views
111
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution