浏览全部资源
扫码关注微信
暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
Published:05 February 2023,
Received:06 September 2022,
Revised:26 September 2022,
移动端阅览
谢怿,吴绍航,高彦艳等.通过氧源调控原子层沉积的SnOx层实现高效稳定的钙钛矿太阳能电池[J].发光学报,2023,44(02):337-345.
XIE Yi,WU Shaohang,GAO Yanyan,et al.Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnOx Layer via Oxygen Sources[J].Chinese Journal of Luminescence,2023,44(02):337-345.
谢怿,吴绍航,高彦艳等.通过氧源调控原子层沉积的SnOx层实现高效稳定的钙钛矿太阳能电池[J].发光学报,2023,44(02):337-345. DOI: 10.37188/CJL.20220325.
XIE Yi,WU Shaohang,GAO Yanyan,et al.Constructing Efficient and Stable Perovskite Solar Cells by Adjusting Atomic-layer-deposited SnOx Layer via Oxygen Sources[J].Chinese Journal of Luminescence,2023,44(02):337-345. DOI: 10.37188/CJL.20220325.
原子层沉积的SnO
x
薄膜具有良好的均匀性和致密性,常被用于提升倒置平面结构钙钛矿太阳能电池的稳定性。而SnO
x
薄膜的特性对器件能量转换效率(Power conversion efficiency,PCE)有着重要影响。本文通过氧源(H
2
O、O
3
)调控SnO
x
薄膜的能级和导电性,提升器件PCE。结果表明,O
3
作为单一氧源的SnO
x
薄膜(记为O
3
‐SnO
x
)具有较优的能级排列;而只有H
2
O作氧源的SnO
x
薄膜(记为H
2
O‐SnO
x
)具有较高的电导率。而采用O
3
和H
2
O混合氧源制备的SnO
x
(记为MIX‐SnO
x
),则兼顾了能级匹配和良好的导电性,有效提升器件的PCE,达到20.9%。不仅如此,得益于SnO
x
薄膜的致密结构,有效避免了外部水氧的入侵和内部材料的分解流失,从而提升了器件稳定性,在85 ℃(氮气气氛)下老化超过646 h仍能维持初始PCE的86%以上。
SnO
x
deposited by atomic layer deposition exhibits uniform and dense nature, which is commonly used to improve the stability of inverted planar perovskite solar cells. Meanwhile, the characteristics of SnO
x
films have an essential impact on power conversion efficiency(PCE) of devices. In this paper, the characteristics of atomic-layer-deposited SnO
x
are adjusted by the oxygen sources(H
2
O, O
3
), including energy level and conductivity, so as to achieve the improvement of PCE of devices. The results show that the SnO
x
film with O
3
as a single oxygen source has good energy level alignment. SnO
x
, which only has water as an oxygen source (denoted H
2
O-SnO
x
), performs higher electrical conductivity. While, taking advantage of mentioned sources, the SnO
x
(denoted as MIX-SnO
x
) not only obtains good energy level alignment, but also excellent conductivity, which effectively improves the PCE of the devices, reaching 20.9%. Moreover, thanks to the denseness of SnO
x
film, it can largely prevent the ingress of moisture into devices, and also inhibit the decomposition of perovskite, dramatically enhancing the stability of perovskite solar cells, which can retain 86% of initial PCE after aging at 85 ℃ (nitrogen atmosphere) for more than 646 h.
钙钛矿太阳能电池原子层沉积氧源调控SnOx
perovskite solar cellsatomic layer depositionoxygen resources adjustmentSnOx
BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics [J]. Chem. Rev., 2018, 119(5): 3418-3451. doi: 10.1021/acs.chemrev.8b00336http://dx.doi.org/10.1021/acs.chemrev.8b00336
ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542-546. doi: 10.1126/science.1254050http://dx.doi.org/10.1126/science.1254050
CHEN W, WU Y Z, YUE Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J]. Science, 2015, 350(6263): 944-948. doi: 10.1126/science.aad1015http://dx.doi.org/10.1126/science.aad1015
ERDENEBILEG E, WANG H, LI J, et al. Low-temperature atomic layer deposited electron transport layers for co-evaporated perovskite solar cells [J]. Solar RRL, 2022, 6(1): 2100842. doi: 10.1002/solr.202100842http://dx.doi.org/10.1002/solr.202100842
SEO S, JEONG S, PARK H, et al. Atomic layer deposition for efficient and stable perovskite solar cells [J]. Chem. Commun., 2019, 55(17): 2403-2416. doi: 10.1039/c8cc09578ghttp://dx.doi.org/10.1039/c8cc09578g
RAIFORD J A, OYAKHIRE S T, BENT S F. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells [J]. Energy Environ. Sci., 2020, 13(7): 1997-2023. doi: 10.1039/d0ee00385ahttp://dx.doi.org/10.1039/d0ee00385a
BRINKMANN K O, ZHAO J, POURDAVOUD N, et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells [J]. Nat. Commun., 2017, 8(1): 13938-1-9. doi: 10.1038/ncomms13938http://dx.doi.org/10.1038/ncomms13938
SEO S, JEONG S, BAE C, et al. Perovskite solar cells with inorganic electron-and hole-transport layers exhibiting long-term (≈500 h) stability at 85 ℃ under continuous 1 sun illumination in ambient air [J]. Adv. Mater., 2018, 30(29): 1801010-1-8. doi: 10.1002/adma.201801010http://dx.doi.org/10.1002/adma.201801010
XIAO K, LIN Y H, ZHANG M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules [J]. Science, 2022, 376(6594): 762-767. doi: 10.1126/science.abn7696http://dx.doi.org/10.1126/science.abn7696
REN N Y, ZHU C J, LI R J, et al. 50 ℃ low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells [J]. Appl. Phys. Lett., 2022, 121(3): 033502-1-7. doi: 10.1063/5.0091311http://dx.doi.org/10.1063/5.0091311
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
CHENG H E, TIAN D C, HUANG K C. Properties of SnO2 films grown by atomic layer deposition [J]. Procedia Eng., 2012, 36: 510-515. doi: 10.1016/j.proeng.2012.03.074http://dx.doi.org/10.1016/j.proeng.2012.03.074
DU X, DU Y, GEORGE S M. In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques [J]. J. Vac. Sci. Technol. A, 2005, 23(4): 581-588. doi: 10.1116/1.1914810http://dx.doi.org/10.1116/1.1914810
ELAM J W, BAKER D A, HRYN A J, et al. Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin [J]. J. Vac. Sci. Technol. A, 2008, 26(2): 244-252. doi: 10.1116/1.2835087http://dx.doi.org/10.1116/1.2835087
HU T, BECKER T, POURDAVOUD N, et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers [J]. Adv. Mater., 2017, 29(27): 1606656-1-9. doi: 10.1002/adma.201606656http://dx.doi.org/10.1002/adma.201606656
LEE J H, YOO M, KANG D H, et al. Selective SnOx atomic layer deposition driven by oxygen reactants [J]. ACS Appl. Mater. Interfaces, 2018, 10(39): 33335-33342. doi: 10.1021/acsami.8b12251http://dx.doi.org/10.1021/acsami.8b12251
MULLINGS M N, HÄGGLUND C, BENT S F. Tin oxide atomic layer deposition from tetrakis (dimethylamino) tin and water [J]. J. Vac. Sci. Technol. A, 2013, 31(6): 061503-1-8. doi: 10.1116/1.4812717http://dx.doi.org/10.1116/1.4812717
MACKUS A J M, MACISAAC C, KIM W H, et al. Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide [J]. J. Chem. Phys., 2017, 146(5): 052802-1-11. doi: 10.1063/1.4961459http://dx.doi.org/10.1063/1.4961459
CHOI D W, MAENG W J, PARK J S. The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics [J]. Appl. Surf. Sci., 2014, 313: 585-590. doi: 10.1016/j.apsusc.2014.06.027http://dx.doi.org/10.1016/j.apsusc.2014.06.027
CHOI D W, PARK J S. Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant [J]. Surf. Coat. Technol., 2014, 259: 238-243. doi: 10.1016/j.surfcoat.2014.02.012http://dx.doi.org/10.1016/j.surfcoat.2014.02.012
LI F M, SHEN Z T, WENG Y J, et al. Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability [J]. Adv. Funct. Mater., 2020, 30(45): 2004933-1-9. doi: 10.1002/adfm.202004933http://dx.doi.org/10.1002/adfm.202004933
LEE M, KIM D, LEE Y K, et al. Indene-C60 bisadduct electron-transporting material with the high LUMO level enhances open-circuit voltage and efficiency of tin-based perovskite solar cells [J]. ACS Appl. Energy Mater., 2020, 3(6): 5581-5588. doi: 10.1021/acsaem.0c00535http://dx.doi.org/10.1021/acsaem.0c00535
XU C Q, ZHANG Y W, LUO P F, et al. Comparative study on TiO2 and C60 electron transport layers for efficient perovskite solar cells [J]. ACS Appl. Energy Mater., 2021, 4(6): 5543-5553. doi: 10.1021/acsaem.1c00226http://dx.doi.org/10.1021/acsaem.1c00226
MACCO B, WU Y, VANHEMEL D, et al. High mobility In2O3∶H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization [J]. Phys. Status Solidi (RRL)‐Rapid Res. Lett., 2014, 8(12): 987-990. doi: 10.1002/pssr.201409426http://dx.doi.org/10.1002/pssr.201409426
KOIDA T, SAI H, KONDO M. In2O3∶H transparent conductive oxide films with high mobility and near infrared transparency for optoelectronic applications [J]. Surf. Eng., 2012, 28(2): 102-107. doi: 10.1179/1743294411y.0000000053http://dx.doi.org/10.1179/1743294411y.0000000053
SUCKOW S. 2/3-Diode Fit [EB/OL]. 2014-12-03. https://nanohub.org/resources/14300https://nanohub.org/resources/14300.
BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323-356. doi: 10.1039/c5ee02733khttp://dx.doi.org/10.1039/c5ee02733k
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Adv. Energy Mater., 2015, 5(15): 1500477-1-8. doi: 10.1002/aenm.201500477http://dx.doi.org/10.1002/aenm.201500477
DUNFIELD S P, BLISS L, ZHANG F, et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules [J]. Adv. Energy Mater., 2020, 10(26): 1904054-1-35. doi: 10.1002/aenm.201904054http://dx.doi.org/10.1002/aenm.201904054
0
Views
296
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution