浏览全部资源
扫码关注微信
1.重庆邮电大学 光电工程学院, 重庆 400065
2.中国科学技术大学 物理学院, 安徽 合肥 230026
Published:05 September 2022,
Received:17 June 2022,
Revised:05 July 2022,
移动端阅览
楼碧波,尹民.Bi3+掺杂体系的发光机理:第一性原理研究[J].发光学报,2022,43(09):1446-1458.
LOU Bi-bo,YIN Min.Luminescence Mechanism of Bi3+ Doped Materials: First Principles Studies[J].Chinese Journal of Luminescence,2022,43(09):1446-1458.
楼碧波,尹民.Bi3+掺杂体系的发光机理:第一性原理研究[J].发光学报,2022,43(09):1446-1458. DOI: 10.37188/CJL.20220245.
LOU Bi-bo,YIN Min.Luminescence Mechanism of Bi3+ Doped Materials: First Principles Studies[J].Chinese Journal of Luminescence,2022,43(09):1446-1458. DOI: 10.37188/CJL.20220245.
随基质材料的不同,Bi
3+
离子可以产生深紫外、可见乃至近红外区域的发光,经常被用作各类发光材料中的激活离子。对Bi
3+
掺杂的能级结构和发光机理研究有助于新型发光材料的设计和性能改进。本文对近期开展的第一性原理计算的相关方法和结果进行分析总结,讨论了Bi
3+
掺杂体系基态和激发态的局域结构和电子结构共性,借助位形坐标图分析讨论了该类材料激发、弛豫以及发射的动力学过程。所研究的激发态主要涵盖了Bi
3+
的6s
1
6p
1
电子组态、配体⁃掺杂离子电荷迁移态6s
2
6p
1
加束缚空穴、金属⁃金属电荷迁移态6s
1
加束缚电子以及电子在离子对间迁移形成的Bi
2+
⁃Bi
4+
离子对等4种类型。全文力图从Bi
3+
光谱学特征的实验指认出发,通过总结各种发光过程的物理图像及理论描述,以若干代表性例子作为依托,展示有关理论和计算对实验现象的分析和指引作用。同时,也简要讨论了发光中心局域结构、基质带隙、缺陷能级等与Bi
3+
离子发光性质之间的联系。
The trivalent bismuth ions can produce, depending on the host, luminescence in deep ultraviolet, visible and even near-infrared wavelengths, which are often adopted as activators for various luminescent materials. The theoretical studies on energy level structures and the luminescence mechanism of Bi
3+
dopants can support the design and performance improvement of new luminescent materials. Here, after providing a brief summary of the calculation methods developed and the formula derived to bridge the data from calculations based on density functional theory, we presented the theoretical results from the first-principles calculations on several prototype systems and provided an interpretation of the reported experimental results. The configurational coordinate diagrams with structures and energies from first-principles calculations played a central role in the analyses. Four different types of excited states of Bi
3+
ions are covered: the internal excitation of 6s
1
6p
1
electron configuration, the ligand-dopant charge transfer excitation of 6s
2
6p
1
plus a localized hole, the metal to metal charge transfer excitation of 6s
1
plus a bound electron, and the inter-valent Bi
2+
-Bi
4+
state as an excited state of a Bi
3+
pair. Great efforts have been done to provide detailed quantitative predictions on the spectroscopy of Bi
3+
ions in solids. The results clearly show the role played by theoretical studies in designing and optimizing novel luminescent materials. In addition, the relationship of luminescent properties of Bi
3+
ions with local coordination environment of dopant centers, band gap of hosts and defect levels was briefly discussed.
第一性原理Bi3+离子光致发光激发态
first-principlesBi3+ ionsphotoluminescenceexcited states
SUN H T, ZHOU J J, QIU J R. Recent advances in bismuth activated photonic materials [J]. Prog. Mater. Sci., 2014, 64: 1-72. doi: 10.1016/j.pmatsci.2014.02.002http://dx.doi.org/10.1016/j.pmatsci.2014.02.002
KRASNIKOV A, MIHOKOVA E, NIKL M, et al. Luminescence spectroscopy and origin of luminescence centers in Bi-doped materials [J]. Crystals, 2020, 10(3): 208. doi: 10.3390/cryst10030208http://dx.doi.org/10.3390/cryst10030208
DANG P P, LIU D J, LI G G, et al. Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs [J]. Adv. Opt. Mater., 2020, 8(16): 1901993-1-33. doi: 10.1002/adom.201901993http://dx.doi.org/10.1002/adom.201901993
WEI Y, XING G C, LIU K, et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization [J]. Light Sci. Appl., 2019, 8: 15-1-9. doi: 10.1038/s41377-019-0126-1http://dx.doi.org/10.1038/s41377-019-0126-1
LIU D J, YUN X H, DANG P P, et al. Yellow/orange-emitting ABZn2Ga2O7∶Bi3+ (A=Ca, Sr; B=Ba, Sr) phosphors: optical temperature sensing and white light-emitting diode applications [J]. Chem. Mater., 2020, 32(7): 3065-3077. doi: 10.1021/acs.chemmater.0c00054http://dx.doi.org/10.1021/acs.chemmater.0c00054
ZENG Z C, HUANG B L, WANG X, et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting [J]. Adv. Mater., 2020, 32(43): 2004506-1-10. doi: 10.1002/adma.202004506http://dx.doi.org/10.1002/adma.202004506
KEEVEND K, PUUST L, KURVITS K, et al. Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy bioimaging [J]. Nano Lett., 2019, 19(9): 6013-6018. doi: 10.1021/acs.nanolett.9b01819http://dx.doi.org/10.1021/acs.nanolett.9b01819
SUN W Z, PANG R, LI H M, et al. Investigation of a novel color tunable long afterglow phosphor KGaGeO4∶Bi3+: luminescence properties and mechanism [J]. J. Mater. Chem. C, 2017, 5(6): 1346-1355. doi: 10.1039/c6tc04012hhttp://dx.doi.org/10.1039/c6tc04012h
SHI J P, SUN X, ZHENG S H, et al. Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor [J]. Adv. Opt. Mater., 2019, 7(19): 1900526-1-6. doi: 10.1002/adom.201900526http://dx.doi.org/10.1002/adom.201900526
ZHUANG Y X, UEDA J, TANABE S. Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics [J]. Opt. Mater. Express, 2012, 2(10): 1378-1383. doi: 10.1364/ome.2.001378http://dx.doi.org/10.1364/ome.2.001378
LI X, LI P L, WANG Z J, et al. Color-tunable luminescence properties of Bi3+ in Ca5(BO3)3 via changing site occupation and energy transfer [J]. Chem. Mater., 2017, 29(20): 8792-8803. doi: 10.1021/acs.chemmater.7b03151http://dx.doi.org/10.1021/acs.chemmater.7b03151
BOUTINAUD P. Revisiting the spectroscopy of the Bi3+ ion in oxide compounds [J]. Inorg. Chem. 2013, 52(10): 6028-6038. doi: 10.1021/ic400382khttp://dx.doi.org/10.1021/ic400382k
BOUTINAUD P. On the luminescence of Bi3+ pairs in oxidic compounds [J]. J. Lumin., 2018, 197: 228-232. doi: 10.1016/j.jlumin.2018.01.052http://dx.doi.org/10.1016/j.jlumin.2018.01.052
DORENBOS P. Electronic structure of Bi-activated luminescent compounds and pure bismuth photocatalytic compounds [J]. ECS J. Solid State Sci. Technol., 2021, 10(8): 086002-1-13. doi: 10.1149/2162-8777/ac19c6http://dx.doi.org/10.1149/2162-8777/ac19c6
SWART H C, KROON R E. (INVITED) Ultraviolet and visible luminescence from bismuth doped materials [J]. Opt. Mater. Ⅹ, 2019, 2: 100025-1-22. doi: 10.1016/j.omx.2019.100025http://dx.doi.org/10.1016/j.omx.2019.100025
WEN J, JIANG G S, ZHONG J Y, et al. Site occupation and 4f→5d transitions of Ce3+ ions at mixed Ca2+/Y3+ sites in CaYAlO4: insights from first-principles calculations [J]. J. Lumin., 2019, 216: 116726-1-6. doi: 10.1016/j.jlumin.2019.116726http://dx.doi.org/10.1016/j.jlumin.2019.116726
WEN J, WANG Y, JIANG G S, et al. First-principles study on self-activated luminescence and 4f→5d transitions of Ce3+ in M5(PO4)3X (M = Sr, Ba; X = Cl, Br) [J]. Inorg. Chem., 2020, 59(7): 5170-5181. doi: 10.1021/acs.inorgchem.0c00406http://dx.doi.org/10.1021/acs.inorgchem.0c00406
NING L X, CHENG W P, ZHOU C C, et al. Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid dft study [J]. J. Phys. Chem. C, 2014, 118(34): 19940-19947. doi: 10.1021/jp5050404http://dx.doi.org/10.1021/jp5050404
FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids [J]. Rev. Mod. Phys., 2014, 86(1): 253-305. doi: 10.1103/revmodphys.86.253http://dx.doi.org/10.1103/revmodphys.86.253
DU M H. Emission trend of multiple self-trapped excitons in luminescent 1d copper halides [J]. ACS Energy Lett., 2020, 5(2): 464-469. doi: 10.1021/acsenergylett.9b02688http://dx.doi.org/10.1021/acsenergylett.9b02688
LOU B B, WEN J, CAI J J, et al. First-principles study of Bi3+ related luminescence and traps in the perovskites CaMO3 (M = Zr, Sn, Ti) [J]. Phys. Rev. B, 2021, 103(7): 075109-1-9. doi: 10.1103/physrevb.103.075109http://dx.doi.org/10.1103/physrevb.103.075109
LOU B B, WEN J, NING L X, et al. Understanding the defect levels and photoluminescence in a series of bismuth-doped perovskite oxides: first-principles study [J]. Phys. Rev. B, 2021, 104(11): 115101-1-11. doi: 10.1103/physrevb.104.115101http://dx.doi.org/10.1103/physrevb.104.115101
FENG Z Y, LOU B B, YIN M, et al. First-principles study of Bi3+-related luminescence and electron and hole traps in (Y/Lu/La)PO4 [J]. Inorg. Chem., 2021, 60(7): 4434-4446. doi: 10.1021/acs.inorgchem.0c03217http://dx.doi.org/10.1021/acs.inorgchem.0c03217
FENG Z Y, LOU B B, CHEN Q L, et al. Self-activated and bismuth-related photoluminescence in rare-earth vanadate, niobate, and tantalate series—a first-principles study [J]. Inorg. Chem., 2021, 60(21): 16614-16625. doi: 10.1021/acs.inorgchem.1c02508http://dx.doi.org/10.1021/acs.inorgchem.1c02508
LIU M Z, DUAN C K, TANNER P A, et al. Rationalizing the photoluminescence of Bi3+ and Sb3+ in double perovskite halide crystals [J]. J. Phys. Chem. C, 2021, 125(48): 26670-26678. doi: 10.1021/acs.jpcc.1c09069http://dx.doi.org/10.1021/acs.jpcc.1c09069
AWATER R H P, DORENBOS P. The Bi3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds [J]. J. Lumin., 2017, 184: 221-231. doi: 10.1016/j.jlumin.2016.12.021http://dx.doi.org/10.1016/j.jlumin.2016.12.021
BABIN V, GORBENKO V, KRASNIKOV A, et al. Origin of Bi3+-related luminescence centres in Lu3Al5O12∶Bi and Y3Al5O12∶Bi single crystalline films and the structure of their relaxed excited states [J]. Phys. Status Solidi B Basic Solid State Phys., 2012, 249(5): 1039-1045. doi: 10.1002/pssb.201147444http://dx.doi.org/10.1002/pssb.201147444
ZHANG Z H, WANG X, WANG L L, et al. The position shifting of charge transfer band in Eu3+-doped Re2O3 phosphors [J]. Chem. Phys. Lett., 2019, 731: 136611-1-5. doi: 10.1016/j.cplett.2019.136611http://dx.doi.org/10.1016/j.cplett.2019.136611
KRASNIKOV A, TSIUMRA V, VASYLECHKO L, et al. Photoluminescence origin in Bi3+-doped YVO4, LuVO4, and GdVO4 orthovanadates [J]. J. Lumin., 2019, 212: 52-60. doi: 10.1016/j.jlumin.2019.04.019http://dx.doi.org/10.1016/j.jlumin.2019.04.019
SRIVASTAVA A M, COMANZO H A. The ultraviolet and visible luminescence of Bi3+ in the orthorhombic perovskite, GdAlO3 [J]. Opt. Mater., 2017, 63: 118-121. doi: 10.1016/j.optmat.2016.05.042http://dx.doi.org/10.1016/j.optmat.2016.05.042
CAVALLI E, ANGIULI F, MEZZADRI F, et al. Tunable luminescence of Bi3+-doped YPxV1-xO4 (0 ≤ x ≤1) [J]. J. Phys. Condes. Matter, 2014, 26(38): 385503-1-14. doi: 10.1088/0953-8984/26/38/385503http://dx.doi.org/10.1088/0953-8984/26/38/385503
XIA Y J, HUANG F Q, WANG W D, et al. A reinvestigation of luminescence properties of Bi3+-activated MSb2O6 (M = Ca, Sr) phosphors [J]. J. Alloys Compd., 2009, 476(1-2): 534-538. doi: 10.1016/j.jallcom.2008.09.071http://dx.doi.org/10.1016/j.jallcom.2008.09.071
JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic configuration [J]. J. Phys. Chem. Solids, 1991, 52(1): 35-67. doi: 10.1016/0022-3697(91)90059-9http://dx.doi.org/10.1016/0022-3697(91)90059-9
JACQUIER B. Molecular orbital theory for heavy-metal luminescent centers: application to the La2O3∶Bi phosphor [J]. J. Chem. Phys. 1975, 63(6): 2442-2452. doi: 10.1063/1.431674http://dx.doi.org/10.1063/1.431674
RÉAL F, VALLET V, FLAMENT J P, et al. Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+-doped Y2O3 [J]. J. Chem. Phys., 2007, 127(10): 104705-1-9. doi: 10.1063/1.2768532http://dx.doi.org/10.1063/1.2768532
DU M H. Chemical trends of electronic and optical properties of ns2 ions in halides [J]. J. Mater. Chem. C, 2014, 2(24): 4784-4791. doi: 10.1039/c4tc00485jhttp://dx.doi.org/10.1039/c4tc00485j
CAI J J, JING W G, CHENG J, et al. First-principles calculations of photoluminescence and defect states of Ce3+-doped (Ca/Sr)2B5O9Cl [J]. Phys. Rev. B, 2019, 99(12): 125107-1-12. doi: 10.1103/physrevb.99.125107http://dx.doi.org/10.1103/physrevb.99.125107
JIA Y C, MIGLIO A, PONCÉ S, et al. First-principles study of Ce3+-doped lanthanum silicate nitride phosphors: neutral excitation, Stokes shift, and luminescent center identification [J]. Phys. Rev. B, 2016, 93(15): 155111-1-11. doi: 10.1103/physrevb.93.155111http://dx.doi.org/10.1103/physrevb.93.155111
LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs [J]. Phys. Rev. B, 2008, 78(23): 235104-1-25. doi: 10.1103/physrevb.78.235104http://dx.doi.org/10.1103/physrevb.78.235104
DURRANT T R, MURPHY S T, WATKINS M B, et al. Relation between image charge and potential alignment corrections for charged defects in periodic boundary conditions [J]. J. Chem. Phys., 2018, 149(2): 024103-1-17. doi: 10.1063/1.5029818http://dx.doi.org/10.1063/1.5029818
CAO R P, FU T, XU H D, et al. Synthesis and luminescence enhancement of CaTiO3∶Bi3+ yellow phosphor by codoping Al3+/B3+ ions [J]. J. Alloys Compd., 2016, 674: 51-55. doi: 10.1016/j.jallcom.2016.02.252http://dx.doi.org/10.1016/j.jallcom.2016.02.252
CAO R P, ZHANG J L, WANG W D, et al. Synthesis and luminescence properties of CaSnO3∶Bi3+ blue phosphor and the emission improvement by Li+ ion [J]. Luminescence, 2017, 32(6): 908-912. doi: 10.1002/bio.3268http://dx.doi.org/10.1002/bio.3268
TIAN X N, DOU H J, WU L Y. Bi3+-based luminescent thermometry in perovskite-type CaZrO3 phosphor [J]. J. Mater. Sci. Mater. Electron., 2020, 31(5): 3944-3950. doi: 10.1007/s10854-020-02942-6http://dx.doi.org/10.1007/s10854-020-02942-6
BLASSE G, BRIL A. Investigations on Bi3+-activated phosphors [J]. J. Chem. Phys., 1968, 48(1): 217-222. doi: 10.1063/1.1667905http://dx.doi.org/10.1063/1.1667905
JÜSTEL T, HUPPERTZ P, MAYR W, et al. Temperature-dependent spectra of YPO4∶Me (Me=Ce, Pr, Nd, Bi) [J]. J. Lumin., 2004, 106(3-4): 225-233. doi: 10.1016/j.jlumin.2003.10.004http://dx.doi.org/10.1016/j.jlumin.2003.10.004
SRIVASTAVA A M, CAMARDELLO S J. Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln=Y3+, Lu3+) [J]. Opt. Mater., 2015, 39: 130-133. doi: 10.1016/j.optmat.2014.11.011http://dx.doi.org/10.1016/j.optmat.2014.11.011
BLASSE G. The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides [J]. J. Solid State Chem., 1972, 4(1): 52-54. doi: 10.1016/0022-4596(72)90131-4http://dx.doi.org/10.1016/0022-4596(72)90131-4
MONCORGE R, BOULON G, DENIS J P. Fluorescence properties of bismuth-doped LaPO4 [J]. J. Phys. C Solid State Phys., 1979, 12(6): 1165-1171. doi: 10.1088/0022-3719/12/6/028http://dx.doi.org/10.1088/0022-3719/12/6/028
SETLUR A A, SRIVASTAVA A M. The nature of Bi3+ luminescence in garnet hosts [J]. Opt. Mater., 2006, 29(4): 410-415. doi: 10.1016/j.optmat.2005.09.076http://dx.doi.org/10.1016/j.optmat.2005.09.076
CHEN Q L, JING W G, YEUNG Y Y, et al. Mechanisms of bismuth-activated near-infrared photoluminescence-a first-principles study on the MXCl3 series [J]. Phys. Chem. Chem. Phys., 2021, 23(32): 17420-17429. doi: 10.1039/d1cp01632fhttp://dx.doi.org/10.1039/d1cp01632f
CHEN Q L, LOU B B, JING W G, et al. First-principles study onlow valence states photoluminescence in Bi-doped M2B5O9Cl crystals [J]. J. Alloys Compd., 2021, 863: 158704-1-8. doi: 10.1016/j.jallcom.2021.158704http://dx.doi.org/10.1016/j.jallcom.2021.158704
QIAO Z, WANG X S, HENG C, et al. Exploring intrinsic electron-trapping centers for persistent luminescence in Bi3+-doped LiREGeO4 (RE=Y, Sc, Lu): mechanistic origin from first-principles calculations [J]. Inorg. Chem., 2021, 60(21): 16604-16613. doi: 10.1021/acs.inorgchem.1c02507http://dx.doi.org/10.1021/acs.inorgchem.1c02507
WANG X S, ZHENG C, QIAO Z, et al. First-principles study on luminescent properties of Bi3+-doped ALuGeO4 (A = Li, Na): insights into effects of host cation on emission wavelength [J]. J. Lumin., 2022, 244: 118700-1-9. doi: 10.1016/j.jlumin.2021.118700http://dx.doi.org/10.1016/j.jlumin.2021.118700
0
Views
1359
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution