浏览全部资源
扫码关注微信
山东大学 晶体材料国家重点实验室, 山东 济南 250100
Published:05 November 2022,
Received:02 May 2022,
Revised:23 May 2022,
扫 描 看 全 文
王贵吉,丁晓圆,尹延如等.Dy3+∶Lu2O3中红外激光晶体的导模法生长及其光学性质[J].发光学报,2022,43(11):1808-1814.
WANG Gui-ji,DING Xiao-yuan,YIN Yan-ru,et al.Growth and Optical Properties of Dy3+∶Lu2O3 Mid-infrared Laser Crystal by EFG Method[J].Chinese Journal of Luminescence,2022,43(11):1808-1814.
王贵吉,丁晓圆,尹延如等.Dy3+∶Lu2O3中红外激光晶体的导模法生长及其光学性质[J].发光学报,2022,43(11):1808-1814. DOI: 10.37188/CJL.20220175.
WANG Gui-ji,DING Xiao-yuan,YIN Yan-ru,et al.Growth and Optical Properties of Dy3+∶Lu2O3 Mid-infrared Laser Crystal by EFG Method[J].Chinese Journal of Luminescence,2022,43(11):1808-1814. DOI: 10.37188/CJL.20220175.
采用导模法(Edge‑defined film‑fed growth technique,EFG)制备了无掺杂及Dy
3+
掺杂的Lu
2
O
3
晶体,无掺杂及掺杂晶体在空气中退火后分别变为无色和淡黄色。采用高分辨X射线衍射、拉曼光谱以及吸收光谱等方法对晶体进行了表征。结果表明,晶体X射线衍射摇摆曲线的半峰宽分别为98.4
"
、170.4
"
、193.9
"
,最大声子能量分别为609.0,611.4,612.6 cm
-1
;无掺杂晶体在260~3 000 nm波段没有明显的吸收,而掺杂晶体具有350,742,798,884,1 063,1 258,1 681,2 774 nm Dy
3+
的特征吸收峰。采用1 258 nm激光进行激发,得到2.7~3.0 μm的荧光光谱,计算了Dy
3+
的
6
H
13/2
能级寿命分别为17.9 μs和16.3 μs。采用Judd‐Ofelt(以下简写为J‐O)理论计算了相关光学参量,结果表明Dy
3+
∶Lu
2
O
3
晶体具有实现3 μm波段激光输出的潜力。
In this paper, undoped and Dy
3+
doped Lu
2
O
3
crystals
were prepared by EFG(Edge-defined film-fed growth technique). The undoped and doped crystals turned to colorless and pale yellow after annealing in air, respectively. The undoped and doped crystals were characterized by high resolution X-ray diffraction, Raman spectroscopy and absorption spectroscopy. The results indicated that the full width at half maximum(FWHM) of the peaks were 98.4″, 170.4″ and 193.9″, and the maximum phonon energies were 609.0, 611.4, 612.6 cm
-1
, respectively. The undoped crystal had no obvious absorption in the range of 260-3 000 nm band. While the doped crystals had characteristic absorption peaks of Dy
3+
at 350, 742, 798, 884, 1 063, 1 258, 1 681, 2 774 nm. 1 258 nm laser was used for excitation, and fluorescence spectra of 2.7-3 μm were obtained. The lifetime of the
6
H
13/2
energy level of Dy
3+
was calculated as 17.9 μs and 16.3 μs, respectively. The optical parameters of Dy
3+
∶Lu
2
O
3
crystal were calculated by Judd-Ofelt(hereinafter referred to as J-O) theory, and the results showed that Dy
3+
∶Lu
2
O
3
crystal has the potential to realize laser output at 3 μm band.
Dy3+∶Lu2O3导模法中红外激光晶体
Dy3+∶Lu2O3edge-defined film-fed growth methodmid-infrared laser crystals
HEO J, CHO W Y, CHUNG W J. Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass [J]. J. Non‐Cryst. Solids, 1997, 212(2-3): 151-156.
XIAO X S, XU Y T, GUO H T, et al. Theoretical modeling of 4.3 μm mid-infrared lasing in Dy3+-doped chalcogenide fiber lasers [J]. IEEE Photon. J., 2018, 10(2): 1501011-1-11. doi: 10.1109/jphot.2018.2803155http://dx.doi.org/10.1109/jphot.2018.2803155
LI S M, ZHANG L H, ZHANG P X, et al. Spectroscopic characterizations of Dy∶LaF3 crystal [J]. Infrared Phys. Technol., 2017, 87: 65-71.
MAJEWSKI M R, WOODWARD R I, JACKSON S D. Dysprosium mid-infrared lasers: current status and future prospects [J]. Laser Photon. Rev., 2020, 14(3): 1900195-1-20. doi: 10.1002/lpor.201900195http://dx.doi.org/10.1002/lpor.201900195
OKHRIMCHUK A G, BUTVINA L N, DIANOV E M, et al. Optical spectroscopy of the RbPb2Cl5∶Dy3+ laser crystal and oscillation at 5.5 μm at room temperature [J]. J. Opt. Soc. Am. B, 2007, 24(10): 2690-2695.
PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method [J]. J. Cryst. Growth, 2002, 237-239: 879-883. doi: 10.1016/s0022-0248(01)02054-1http://dx.doi.org/10.1016/s0022-0248(01)02054-1
PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments [J]. Opt. Mater., 2002, 19(1): 67-71. doi: 10.1016/s0925-3467(01)00202-6http://dx.doi.org/10.1016/s0925-3467(01)00202-6
YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique [J]. CrystEngComm, 2020, 22(39): 6569-6573. doi: 10.1039/d0ce00855ahttp://dx.doi.org/10.1039/d0ce00855a
PEDROSO C C S, CARVALHO J M, RODRIGUES L C V, et al. Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+-doped Lu2O3 persistent luminescence materials [J]. ACS Appl. Mater. Interfaces, 2016, 8(30): 19593-19604. doi: 10.1021/acsami.6b04683http://dx.doi.org/10.1021/acsami.6b04683
方忠庆, 孙敦陆, 罗建乔, 等. 新型抗辐射GYSGG晶体的Raman光谱研究 [J]. 材料科学, 2017, 7(4): 515-522.
FANG Z Q, SUN D L, LUO J Q, et al. Study on the Raman spectra of a new type GYSGG radiation resistant crystal [J]. Mater. Sci., 2017, 7(4): 515-522. (in Chinese)
KOLESNIKOV I E, TOLSTIKOVA D V, KUROCHKIN A V, et al. Concentration effect on photoluminescence of Eu3+-doped nanocrystalline YVO4 [J]. J. Lumin., 2015, 158: 469-474. doi: 10.1016/j.jlumin.2014.10.024http://dx.doi.org/10.1016/j.jlumin.2014.10.024
NAKAYAMA Y, HARADA Y, KITA T. An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration [J]. Appl. Phys. Lett., 2020, 117(4): 041104-1-5. doi: 10.1063/5.0013213http://dx.doi.org/10.1063/5.0013213
SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy∶Lu2O3 for yellow laser [J]. Chin. Phys. B, 2018, 27(7): 077802. doi: 10.1088/1674-1056/27/7/077802http://dx.doi.org/10.1088/1674-1056/27/7/077802
SWINEHART D F. The beer-lambert law [J]. J. Chem. Educ., 1962, 39(7): 333. doi: 10.1021/ed039p333http://dx.doi.org/10.1021/ed039p333
HEUER A M, VON BRUNN P, HUBER G, et al. Dy3+∶Lu2O3 as a novel crystalline oxide for mid-infrared laser applications [J]. Opt. Mater. Express, 2018, 8(11): 3447-3455. doi: 10.1364/ome.8.003447http://dx.doi.org/10.1364/ome.8.003447
WANG Y, LI J F, ZHU Z J, et al. Mid-infrared emission in Dy∶YAlO3 crystal [J]. Opt. Mater. Express, 2014, 4(6): 1104-1111.
CHAIKA M, BALABANOV S, PERMIN D. Optical spectra and gain properties of Er3+∶Lu2O3 ceramics for eye-safe 1.5-μm lasers [J]. Opt. Mater., 2021, 112: 110785-1-6. doi: 10.1016/j.optmat.2020.110785http://dx.doi.org/10.1016/j.optmat.2020.110785
ZHANG Z, MA F K, GUO X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals [J]. Opt. Mater. Express, 2018, 8(12): 3820-3828. doi: 10.1364/ome.8.003820http://dx.doi.org/10.1364/ome.8.003820
ILHAN M, KESKIN İ Ç. Analysis of Judd‐Ofelt parameters and radioluminescence results of SrNb2O6∶Dy3+ phosphors synthesized via molten salt method [J]. Phys. Chem. Chem. Phys., 2020, 22(35): 19769-19778. doi: 10.1039/D0CP02256Jhttp://dx.doi.org/10.1039/D0CP02256J
SHI Z L, SONG Q S, LIU J, et al. Optical properties of Dy∶YCa4O(BO3)3 crystal grown by the Czochralski technique [J]. Mater. Res. Express, 2021, 8(6): 065203-1-6.
HE S Y, YUAN F F, LIU L H, et al. Crystal growth and spectroscopic characterization of Dy3+∶Sr3Gd2(BO3)4 —a potential yellow solid state laser material [J]. Opt. Mater., 2021, 111: 110562-1-6. doi: 10.1016/j.optmat.2020.110562http://dx.doi.org/10.1016/j.optmat.2020.110562
XU X D, HU Z W, LI R J, et al. Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers [J]. Opt. Mater., 2017, 66: 469-473. doi: 10.1016/j.optmat.2017.02.046http://dx.doi.org/10.1016/j.optmat.2017.02.046
0
Views
234
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution