浏览全部资源
扫码关注微信
1.长春电子科技学院 电子工程学院, 吉林 长春 130114
2.吉林大学 电子科学与工程学院, 集成光电子学国家重点联合实验室吉林大学实验区, 吉林 长春 130012
Published:05 August 2022,
Received:08 May 2022,
Revised:24 May 2022,
移动端阅览
刘春艳,王源,殷成雨等.利用原子层沉积技术实现有机电致发光器件的薄膜封装[J].发光学报,2022,43(08):1281-1299.
LIU Chun-yan,WANG Yuan,YIN Cheng-yu,et al.Thin-film Encapsulation of Organic Light Emitting Diode by Atomic Layer Deposition[J].Chinese Journal of Luminescence,2022,43(08):1281-1299.
刘春艳,王源,殷成雨等.利用原子层沉积技术实现有机电致发光器件的薄膜封装[J].发光学报,2022,43(08):1281-1299. DOI: 10.37188/CJL.20220159.
LIU Chun-yan,WANG Yuan,YIN Cheng-yu,et al.Thin-film Encapsulation of Organic Light Emitting Diode by Atomic Layer Deposition[J].Chinese Journal of Luminescence,2022,43(08):1281-1299. DOI: 10.37188/CJL.20220159.
有机电致发光器件(Organic light emitting diode,OLED)具有轻薄、便于携带、自发光、能耗低、亮度更大、柔性显示等特点,可以增加显示产品的附加值,因此被科学和产业界广泛关注。然而,OLED器件中的有机材料对空气中的水汽和氧气十分敏感,若器件在无封装保护的情况下长期在空气中存放,将会严重影响OLED的工作性能和寿命。除了选择合适的传输层材料、表面层结构和利用界面工程提高材料水氧耐受能力之外,对器件进行可靠的封装是隔绝空气中水汽和氧气侵蚀的一种有效手段。原子层沉积(Atomic layer deposition,ALD)是一种已经在实验室验证的有效薄膜沉积封装技术,由于ALD的自限制反应特性,可以在低温下沉积出厚度精确可控且均匀致密的薄膜,利用ALD沉积的薄膜往往拥有良好的机械柔性、超高的阻隔性能和光学透过率。本文将回顾原子层沉积技术的原理,分析ALD制备薄膜的水汽透过率,比较ALD在单层、有机‐无机叠层薄膜封装制备上的技术优势。
Organic light emitting diode(OLED) has the characteristics of lightness, thinness, portability, self-luminescence, low energy consumption, higher brightness, and flexible display
etc
., which can increase the added value of display products, so it has been widely concerned by scientific and industrial circles. However, the key organic materials in OLED devices are very sensitive to water vapor and oxygen in the air. If the device is exposed to air for a long time without protection, it will seriously affect the long-term performance of the device and shorten the life of the OLED. In addition to selecting appropriate transmission layer material and surface layer structure, and using interface engineering to improve the water and oxygen tolerance of materials, reliable encapsulation of the device is another effective means to isolate water vapor and oxygen corrosion in the air. Atomic layer deposition(ALD) is an effective film deposition and thin film encapsulation technology that has been verified in the laboratory. Due to the self-limiting reaction characteristics of ALD, it can deposit thin films with accurate and controllable thickness, uniform and dense at low temperature. The films deposited by ALD always have good flexibility, ultra-high barrier performance and optical transmittance. In this paper, we will review the principle of atomic layer deposition technology, analyze the water vapor transmission rate, compare the advantages of ALD in single-layer and organic-inorganic laminated film encapsulation.
薄膜封装有机电致发光器件原子层沉积柔性显示水汽透过率
thin-film encapsulationorganic light emitting diodeatomic layer depositionflexible displaywater vapor transmission rate
李兴彩. 莱特光电王亚龙: OLED产业步入黄金时期 [N]. 上海证券报, 2022-03-18(006), doi: 10.28719/n.cnki.Nshzj.2022.001350http://dx.doi.org/10.28719/n.cnki.Nshzj.2022.001350.
LI X C. Wang Ya Long of Wright Photoelectric technology: OLED industry enters a golden period [N]. Shanghai Securities News, 2022-03-18(006), doi:10.28719/n.cnki.nshzj.2022.001350.http://dx.doi.org/10.28719/n.cnki.nshzj.2022.001350.(in Chinese)
杨桢林, 费纯纯, 成程, 等. 柔性有机发光二极管柔性电极薄膜的研究进展 [J]. 发光学报, 2019, 40(2): 238-256. doi: 10.3788/fgxb20194002.0238http://dx.doi.org/10.3788/fgxb20194002.0238
YANG Z L, FEI C C, CHENG C, et al. Review of flexible electrode film for flexible organic light-emitting diodes [J]. Chin. J. Lumin., 2019, 40(2): 238-256. (in Chinese). doi: 10.3788/fgxb20194002.0238http://dx.doi.org/10.3788/fgxb20194002.0238
周雄图, 陈桂雄, 孙钒,等. Al2O3/PMMA交叠薄膜制备及OLED封装性能 [J]. 发光学报, 2021, 42(1): 118-125. doi: 10.37188/CJL.20200325http://dx.doi.org/10.37188/CJL.20200325
ZHOU X T, CHEN G X, SUN F, et al. Fabrication of Al2O3/PMMA laminates and its barrier performance in OLED encapsulation [J]. Chin. J. Lumin., 2021, 42(1): 118-125. (in Chinese). doi: 10.37188/CJL.20200325http://dx.doi.org/10.37188/CJL.20200325
段玮, 李晟, 张浩, 等. 基于Al2O3封装薄膜的OLED水汽透过率测试方法及系统研究 [J]. 发光学报, 2016, 37(1): 88-93. doi: 10.3788/fgxb20163701.0088http://dx.doi.org/10.3788/fgxb20163701.0088
DUAN W, LI S, ZHANG H, et al. Test method and system of water vapor transmission rate based on Al2O3 encapsulated thin-film for OLEDs [J]. Chin. J. Lumin., 2016, 37(1): 88-93. (in Chinese). doi: 10.3788/fgxb20163701.0088http://dx.doi.org/10.3788/fgxb20163701.0088
SHIN S U, RYU S O. Optical transmittance improvements of Al2O3/TiO2 multilayer OLED encapsulation films processed by atomic layer deposition [J]. J. Electron. Mater., 2021, 50(4): 2015-2020. doi: 10.1007/s11664-020-08731-5http://dx.doi.org/10.1007/s11664-020-08731-5
CHEN Y T, YANG Y, YUAN P, et al. Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility [J]. Nano Res., 2022, 15(4): 2913-2918. doi: 10.1007/s12274-021-3896-8http://dx.doi.org/10.1007/s12274-021-3896-8
BRINKMANN K O, GAHLMANN T, RIEDL T. Atomic layer deposition of functional layers in planar perovskite solar cells [J]. Sol. RRL, 2020, 4(1): 1900332-1-21. doi: 10.1002/solr.201900332http://dx.doi.org/10.1002/solr.201900332
HOSSAIN M A, KHOO K T, CUI X, et al. Atomic layer deposition enabling higher efficiency solar cells: a review [J]. Nano Mater. Sci., 2020, 2(3): 204-226. doi: 10.1016/j.nanoms.2019.10.001http://dx.doi.org/10.1016/j.nanoms.2019.10.001
JARVIS K L, EVANS P J. Growth of thin barrier films on flexible polymer substrates by atomic layer deposition [J]. Thin Solid Films, 2017, 624: 111-135. doi: 10.1016/j.tsf.2016.12.055http://dx.doi.org/10.1016/j.tsf.2016.12.055
LEE S, HAN J H, LEE S H, et al. Review of organic/inorganic thin film encapsulation by atomic layer deposition for a flexible OLED display [J]. JOM, 2019, 71(1): 197-211. doi: 10.1007/s11837-018-3150-3http://dx.doi.org/10.1007/s11837-018-3150-3
周静, 田雪迎, 王斌凯, 等. 低温原子层沉积封装技术在OLED上的应用及对有机、钙钛矿太阳能电池封装的启示 [J]. 化学学报, 2022, 80(3): 395-422. doi: 10.6023/a21110513http://dx.doi.org/10.6023/a21110513
ZHOU J, TIAN X Y, WANG B K, et al. Application of low temperature atomic layer deposition packaging technology in OLED and its implications for organic and perovskite solar cell packaging [J]. Acta Chim. Sinica, 2022, 80(3): 395-422. (in Chinese). doi: 10.6023/a21110513http://dx.doi.org/10.6023/a21110513
LU Q, YANG Z C, MENG X, et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells [J]. Adv. Funct. Mater., 2021, 31(23): 2100151-1-41. doi: 10.1002/adfm.202100151http://dx.doi.org/10.1002/adfm.202100151
MIIKKULAINEN V, LESKELÄ M, RITALA M, et al. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends [J]. J. Appl. Phys., 2013, 113(2): 021301-1-101. doi: 10.1063/1.4757907http://dx.doi.org/10.1063/1.4757907
WAN Z X, ZHANG T F, LEE H B R, et al. Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer [J]. ACS Appl. Mater. Interfaces, 2015, 7(48): 26716-26725. doi: 10.1021/acsami.5b08696http://dx.doi.org/10.1021/acsami.5b08696
KIM J, HWANG J H, KWON Y W, et al. Hydrogen-assisted low-temperature plasma-enhanced chemical vapor deposition of thin film encapsulation layers for top-emission organic light-emitting diodes [J]. Org. Electron., 2021, 97: 106261-1-6. doi: 10.1016/j.orgel.2021.106261http://dx.doi.org/10.1016/j.orgel.2021.106261
XU L G, ZHANG Z B, YANG L, et al. Comparison of thermal, plasma-enhanced and layer by layer Ar plasma treatment atomic layer deposition of Tin oxide thin films [J]. J. Cryst. Growth, 2021, 572: 126264. doi: 10.1016/j.jcrysgro.2021.126264http://dx.doi.org/10.1016/j.jcrysgro.2021.126264
HUR M, LEE J Y, KANG W S, et al. Working gas effect on properties of Al2O3 film in plasma-enhanced atomic layer deposition [J]. Thin Solid Films, 2016, 619: 342-346. doi: 10.1016/j.tsf.2016.10.036http://dx.doi.org/10.1016/j.tsf.2016.10.036
CHOI S, KANG C M, BYUN C W, et al. Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays [J]. Nat. Commun., 2020, 11(1): 2732-1-9. doi: 10.1038/s41467-020-16551-8http://dx.doi.org/10.1038/s41467-020-16551-8
LEE S, CHOI H, SHIN S, et al. Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition [J]. Curr. Appl. Phys., 2014, 14(4): 552-557. doi: 10.1016/j.cap.2013.11.053http://dx.doi.org/10.1016/j.cap.2013.11.053
LEE Y, SEO S, OH I K, et al. Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition [J]. Ceram. Int., 2019, 45(14): 17662-17668. doi: 10.1016/j.ceramint.2019.05.332http://dx.doi.org/10.1016/j.ceramint.2019.05.332
KIM W S, KO M G, KIM T S, et al. Titanium dioxide thin films deposited by plasma enhanced atomic layer deposition for OLED passivation [J]. J.Nanosci. Nanotechnol., 2008, 8(9): 4726-4729. doi: 10.1166/jnn.2008.ic48http://dx.doi.org/10.1166/jnn.2008.ic48
HAN D S, CHOI D K, PARK J W. Al2O3/TiO2 multilayer thin films grown by plasma enhanced atomic layer deposition for organic light-emitting diode passivation [J]. Thin Solid Films, 2014, 552: 155-158. doi: 10.1016/j.tsf.2013.12.003http://dx.doi.org/10.1016/j.tsf.2013.12.003
SINGH A, KLUMBIES H, SCHRÖDER U, et al. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using X-ray reflectivity investigations [J]. Appl. Phys. Lett., 2013, 103(23): 233302-1-4. doi: 10.1063/1.4839455http://dx.doi.org/10.1063/1.4839455
SINGH A, NEHM F, MÜLLER-MESKAMP L, et al. OLED compatible water-based nanolaminate encapsulation systems using ozone based starting layer [J]. Org. Electron., 2014, 15(10): 2587-2592. doi: 10.1016/j.orgel.2014.07.024http://dx.doi.org/10.1016/j.orgel.2014.07.024
YANG Y Q, DUAN Y, DUAN Y H, et al. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes [J]. Org. Electron., 2014, 15(6): 1120-1125. doi: 10.1016/j.orgel.2014.03.007http://dx.doi.org/10.1016/j.orgel.2014.03.007
DUAN Y, SUN F B, YANG Y Q, et al. Thin-film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method [J]. ACS Appl. Mater. Interfaces, 2014, 6(6): 3799-3804. doi: 10.1021/am500288qhttp://dx.doi.org/10.1021/am500288q
LI M, GAO D Y, LI S, et al. Realization of highly-dense Al2O3 gas barrier for top-emitting organic light-emitting diodes by atomic layer deposition [J]. RSC Adv., 2015, 5(127): 104613-104620. doi: 10.1039/c5ra21424fhttp://dx.doi.org/10.1039/c5ra21424f
KWON J H, JEON Y, CHOI S, et al. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays [J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43983-43992. doi: 10.1021/acsami.7b14040http://dx.doi.org/10.1021/acsami.7b14040
KWON J H, JEON Y, CHOI S, et al. Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer [J]. J. Inf. Disp., 2018, 19(3): 135-142. doi: 10.1080/15980316.2018.1488770http://dx.doi.org/10.1080/15980316.2018.1488770
YONG S H, KIM S J, PARK J S, et al. Flexible carbon-rich Al2O3 interlayers for moisture barrier films by a spatially-resolved atomic layer deposition process [J]. J. Korean Phys. Soc., 2018, 73(1): 40-44. doi: 10.3938/jkps.73.40http://dx.doi.org/10.3938/jkps.73.40
张炳烨, 谢洪丽, 方铉, 等. 原子层沉积AlOx薄膜对单晶硅太阳能电池钝化机制的影响 [J]. 发光学报, 2016, 37(2): 192-196. doi: 10.3788/fgxb20163702.0192http://dx.doi.org/10.3788/fgxb20163702.0192
ZHANG B Y, XIE H L, FANG X, et al. Passivation mechanism of AlOx thin film fabricated on C-Si by atomic layer deposition [J]. Chin. J. Lumin., 2016, 37(2): 192-196. (in Chinese). doi: 10.3788/fgxb20163702.0192http://dx.doi.org/10.3788/fgxb20163702.0192
张寅辉, 任玲玲, 高慧芳, 等. 纳米尺度HfO2薄膜不同厚度对光学性质的影响 [J]. 发光学报, 2018, 39(3): 375-382. doi: 10.3788/fgxb20183903.0375http://dx.doi.org/10.3788/fgxb20183903.0375
ZHANG Y H, REN L L, GAO H F, et al. Optical properties research of nanoscale HfO2 thin films with different thicknesses [J]. Chin. J. Lumin., 2018, 39(3): 375-382. (in Chinese). doi: 10.3788/fgxb20183903.0375http://dx.doi.org/10.3788/fgxb20183903.0375
YOON K H, KIM H, LEE YE K, et al. UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers [J]. RSC Adv., 2017, 7(10): 5601-5609. doi: 10.1039/c6ra27759dhttp://dx.doi.org/10.1039/c6ra27759d
KLUMBIES H, SCHMIDT P, HÄHNEL M, et al. Thickness dependent barrier performance of permeation barriers made from atomic layer deposited alumina for organic devices [J]. Org. Electron., 2015, 17: 138-143. doi: 10.1016/j.orgel.2014.12.003http://dx.doi.org/10.1016/j.orgel.2014.12.003
JEONG S Y, SHIM H R, NA Y H, et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles [J]. npjFlex. Electron., 2021, 5(1): 5-1-9. doi: 10.1038/s41528-021-00112-0http://dx.doi.org/10.1038/s41528-021-00112-0
LEE K K, LEE K S, KIM T W. Determination of the mechanism based deposition processes of thin film in OLED [J]. Key Eng. Mater., 2006, 321-323: 1431-1434. doi: 10.4028/www.scientific.net/kem.321-323.1431http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.1431
李晓妮, 方芳, 方铉, 等. 柔性衬底上ALD法低温制备的ZnO薄膜的光学和电学特性 [J]. 发光学报, 2012, 33(11): 1232-1235. doi: 10.3788/fgxb20123311.1232http://dx.doi.org/10.3788/fgxb20123311.1232
LI X N, FANG F, FANG X, et al. The optical and electrical properties of ZnO films grown on flexible substrate at low temperature by ALD [J]. Chin. J. Lumin., 2012, 33(11): 1232-1235. English. doi: 10.3788/fgxb20123311.1232http://dx.doi.org/10.3788/fgxb20123311.1232
杨永强, 段羽, 陈平, 等. 低温原子层沉积氧化铝作为有机电致发光器件的封装薄膜 [J]. 发光学报, 2014, 35(9): 1087-1092. doi: 10.3788/fgxb20143509.1087http://dx.doi.org/10.3788/fgxb20143509.1087
YANG Y Q, DUAN Y, CHEN P, et al. Deposition of Al2O3 film using atomic layer deposition method at low temperature as encapsulation layer for OLEDs [J]. Chin. J. Lumin., 2014, 35(9): 1087-1092. (in Chinese). doi: 10.3788/fgxb20143509.1087http://dx.doi.org/10.3788/fgxb20143509.1087
CARCIA P F, MCLEAN R S, REILLY M H. Permeation measurements and modeling of highly defective Al2O3 thin films grown by atomic layer deposition on polymers [J]. Appl. Phys. Lett., 2010, 97(22): 221901-1-3. doi: 10.1063/1.3519476http://dx.doi.org/10.1063/1.3519476
KIM H G, KIM S S. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement [J]. Thin Solid Films, 2011, 520(1): 481-485. doi: 10.1016/j.tsf.2011.06.096http://dx.doi.org/10.1016/j.tsf.2011.06.096
LI H Y, LIU Y F, DUAN Y, et al. Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices [J]. Materials, 2015, 8(2): 600-610. doi: 10.3390/ma8020600http://dx.doi.org/10.3390/ma8020600
BATRA N, GOPE J, VANDAN A, et al. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation [J]. AIP Adv., 2015, 5(6): 067113-1-10. doi: 10.1063/1.4922267http://dx.doi.org/10.1063/1.4922267
JANG J H, KIM N, LI X L, et al. Advanced thin gas barriers film incorporating alternating structure of PEALD-based Al2O3/organic-inorganic nanohybrid layers [J]. Appl. Surf. Sci., 2019, 475: 926-933. doi: 10.1016/j.apsusc.2018.12.296http://dx.doi.org/10.1016/j.apsusc.2018.12.296
CHOI H, SHIN S, JEON H, et al. Fast spatial atomic layer deposition of Al2O3 at low temperature (<100 ℃) as a gas permeation barrier for flexible organic light-emitting diode displays [J]. J. Vac. Sci. Technol. A, 2016, 34(1): 01A121-1-7. doi: 10.1116/1.4934752http://dx.doi.org/10.1116/1.4934752
PARK H, SHIN S, CHOI H, et al. Thin-film encapsulation of Al2O3 multidensity layer structure prepared by spatial atomic layer deposition [J]. J. Vac. Sci. Technol. A, 2020, 38(6): 062403-1-7. doi: 10.1116/6.0000485http://dx.doi.org/10.1116/6.0000485
PARK SH K, OH J, HWANG C S, et al. Ultrathin film encapsulation of an OLED by ALD [J]. Electrochem. Solid-State Lett., 2005, 8(2): H21-1-3. doi: 10.1149/1.1850396http://dx.doi.org/10.1149/1.1850396
KIM E, KWON J, KIM C, et al. Design of ultrathin OLEDs having oxide-based transparent electrodes and encapsulation with sub-mm bending radius [J]. Org. Electron., 2020, 82: 105704-1-8. doi: 10.1016/j.orgel.2020.105704http://dx.doi.org/10.1016/j.orgel.2020.105704
YONG S H, KIM S J, CHO S M, et al. Spatially-resolved remote plasma atomic layer deposition process for moisture barrier Al2O3 films [J]. J. Korean Phys. Soc., 2018, 73(1): 45-52. doi: 10.3938/jkps.73.45http://dx.doi.org/10.3938/jkps.73.45
CARCIA P F, MCLEAN R S, GRONER M D, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition [J]. J. Appl. Phys., 2009, 106(2): 023533-1-6. doi: 10.1063/1.3159639http://dx.doi.org/10.1063/1.3159639
KEUNING W, VAN DE WEIJER P, LIFKA H, et al. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx∶H stacks [J]. J. Vac. Sci. Technol. A, 2012, 30(1): 01A131-1-6. doi: 10.1116/1.3664762http://dx.doi.org/10.1116/1.3664762
YANG Y Q, DUAN Y, CHEN P, et al. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature [J]. J. Phys. Chem. C, 2013, 117(39): 20308-20312. doi: 10.1021/jp406738hhttp://dx.doi.org/10.1021/jp406738h
FRANKE S, BAUMKÖTTER M, MONKA C, et al. Alumina films as gas barrier layers grown by spatial atomic layer deposition with trimethylaluminum and different oxygen sources [J]. J. Vac. Sci. Technol. A, 2017, 35(1): 01B117-1-8. doi: 10.1116/1.4971173http://dx.doi.org/10.1116/1.4971173
HOSSAIN M T Z. Electrical Characteristics of Gallium Nitride and Silicon Based Metal-Oxide-Semiconductor(MOS) Capacitors [D]. Manhattan: Kansas State University, 2013.
YANG Y Q, DUAN Y. Optimization of Al2O3 films deposited by ALD at low temperatures for OLED encapsulation [J]. J. Phys. Chem. C, 2014, 118(32): 18783-18787. doi: 10.1021/jp505974jhttp://dx.doi.org/10.1021/jp505974j
LI H Y, DUAN Y. High barrier properties of transparent thin-film encapsulations for top-emission organic light-emitting diodes [C]. Proceedings of SPIE 9183, Organic Light Emitting Materials and Devices Ⅹ , San Diego, 2014: 918325-1-10. doi: 10.1117/12.2062525http://dx.doi.org/10.1117/12.2062525
HOFFMANN L, THEIRICH D, PACK S, et al. Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD [J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 4171-4176. doi: 10.1021/acsami.6b13380http://dx.doi.org/10.1021/acsami.6b13380
KIM L H, KIM K, PARK S, et al. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition [J]. ACS Appl. Mater. Interfaces, 2014, 6(9): 6731-6738. doi: 10.1021/am500458dhttp://dx.doi.org/10.1021/am500458d
OH J, SHIN S, PARK J, et al. Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation [J]. Thin Solid Films, 2016, 599: 119-124. doi: 10.1016/j.tsf.2015.12.044http://dx.doi.org/10.1016/j.tsf.2015.12.044
KIM E, HAN Y, KIM W, et al. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials [J]. Org. Electron., 2013, 14(7): 1737-1743. doi: 10.1016/j.orgel.2013.04.011http://dx.doi.org/10.1016/j.orgel.2013.04.011
HAN Y C, KIM E, KIM W, et al. A flexible moisture barrier comprised of a SiO2-embedded organic-inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs [J]. Org. Electron., 2013, 14(6): 1435-1440. doi: 10.1016/j.orgel.2013.03.008http://dx.doi.org/10.1016/j.orgel.2013.03.008
GRAFF G L, WILLIFORD R E, BURROWS P E. Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation [J]. J. Appl. Phys., 2004, 96(4): 1840-1849. doi: 10.1063/1.1768610http://dx.doi.org/10.1063/1.1768610
CHEN G X, WENG Y L, ZHANG Y A, et al. P-13.8: Fabrication of Al2O3/alucone nanolaminates using ALD/MLD and its application to OLED encapsulation [J]. SID Symp. Digest Tech. Papers, 2021, 52(S1): 649-651. doi: 10.1002/sdtp.14584http://dx.doi.org/10.1002/sdtp.14584
WANG H R, ZHAO Y P, WANG Z Y, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation [J]. Nano Energy, 2020, 69: 104375-1-8. doi: 10.1016/j.nanoen.2019.104375http://dx.doi.org/10.1016/j.nanoen.2019.104375
ZHANG H, DING H, WEI M J, et al. Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition [J]. Nanoscale Res. Lett., 2015, 10: 169-1-5. doi: 10.1186/s11671-015-0857-8http://dx.doi.org/10.1186/s11671-015-0857-8
KOO B R, BAE J W, AHN H J. Percolation effect of V2O5 nanorod/graphene oxide nanocomposite films for stable fast-switching electrochromic performances [J]. Ceram. Int., 2019, 45(9): 12325-12330. doi: 10.1016/j.ceramint.2019.03.148http://dx.doi.org/10.1016/j.ceramint.2019.03.148
CHANG C Y, CHOU C T, LEE Y J, et al. Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition [J]. Org. Electron., 2009, 10(7): 1300-1306. doi: 10.1016/j.orgel.2009.07.008http://dx.doi.org/10.1016/j.orgel.2009.07.008
GHOSH A P, GERENSER L J, JARMAN C M, et al. Thin-film encapsulation of organic light-emitting devices [J]. Appl. Phys. Lett., 2005, 86(22): 223503-1-3. doi: 10.1063/1.1929867http://dx.doi.org/10.1063/1.1929867
GAKIS G P, VERGNES H, SCHEID E, et al. Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water [J]. Chem. Eng. Sci., 2019, 195: 399-412. doi: 10.1016/j.ces.2018.09.037http://dx.doi.org/10.1016/j.ces.2018.09.037
ZHAO W Z, WANG Z Y, LI Z, et al. Fabrication of nucleation induction layer of self-encapsulated metal anode by an atomic layer half-reaction for enhanced flexible OLEDs [J]. Appl. Phys. Lett., 2021, 118(21): 213301-1-7. doi: 10.1063/5.0048214http://dx.doi.org/10.1063/5.0048214
KWON J H, CHOI S, JEON Y, et al. Functional design of dielectric-metal-dielectric-based thin-film encapsulation with heat transfer and flexibility for flexible displays [J]. ACS Appl. Mater. Interfaces, 2017, 9(32): 27062-27072. doi: 10.1021/acsami.7b06076http://dx.doi.org/10.1021/acsami.7b06076
沈希彬, 白婷, 车强, 等. 聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能 [J/OL]. (2022-04-14). 功能高分子学报, 2022: 1-11. https://doi.org/10.14133/j.cnki.1008-9357.20211025001https://doi.org/10.14133/j.cnki.1008-9357.20211025001.
SHEN X B, BAI T, CHE Q, et al. Preparation and broadband optical limiting performance of reduced graphene oxide covalently functionalized with poly(N-vinylcarbazole) [J/OL]. (2022-04-14). J. Funct. Polym., 2022:1-11. https://doi.org/10.14133/j.cnki.1008-9357.20211025001.https://doi.org/10.14133/j.cnki.1008-9357.20211025001.(in Chinese)
李鹏, 于超, 姜文龙, 等. 半透明钙钛矿太阳能电池活性层与电极层研究进展 [J]. 发光学报, 2022, 43(3): 404-420. doi: 10.37188/cjl.20210400http://dx.doi.org/10.37188/cjl.20210400
LI P, YU C, JIANG W L, et al. Research progress of active layer and electrode layer of translucent perovskite solar cell [J]. Chin. J. Lumin., 2022, 43(3): 404-420. (in Chinese). doi: 10.37188/cjl.20210400http://dx.doi.org/10.37188/cjl.20210400
易凌俊, 李长红. 基于宇称时间对称结构实现石墨烯光增强吸收 [J]. 发光学报, 2022, 43(1): 119-128. doi: 10.37188/CJL.20210322http://dx.doi.org/10.37188/CJL.20210322
YI L J, LI C H. Light enhanced absorption of graphene based on parity-time symmetry structure [J]. Chin. J. Lumin., 2022, 43(1): 119-128. (in English). doi: 10.37188/CJL.20210322http://dx.doi.org/10.37188/CJL.20210322
JEON J N, LEE H W, YANG H J, et al. Ultra-thin flexible encapsulation layer for OLED displays using graphene oxide nanocomposite [J]. Dig. Tech. Papers‐SID Int. Symp., 2013, 44(1): 1449-1452. doi: 10.1002/j.2168-0159.2013.tb06518.xhttp://dx.doi.org/10.1002/j.2168-0159.2013.tb06518.x
KIM K, LEE H B R, JOHNSON R W, et al. Selective metal deposition at graphene line defects by atomic layer deposition [J]. Nat. Commun., 2014, 5: 4781-1-9. doi: 10.1038/ncomms5781http://dx.doi.org/10.1038/ncomms5781
SEO H K, PARK M H, KIM Y H, et al. Laminated graphene films for flexible transparent thin film encapsulation [J]. ACS Appl. Mater. Interfaces, 2016, 8(23): 14725-14731. doi: 10.1021/acsami.6b01639http://dx.doi.org/10.1021/acsami.6b01639
NAM T, PARK Y J, LEE H, et al. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier [J]. Carbon, 2017, 116: 553-561. doi: 10.1016/j.carbon.2017.02.023http://dx.doi.org/10.1016/j.carbon.2017.02.023
LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996http://dx.doi.org/10.1126/science.1157996
LI X S, ZHU Y W, CAI W W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes [J]. Nano Lett., 2009, 9(12): 4359-4363. doi: 10.1021/nl902623yhttp://dx.doi.org/10.1021/nl902623y
BULUSU A, SINGH A, WANG C Y, et al. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics [J]. J. Appl. Phys., 2015, 118(8): 085501-1-9. doi: 10.1063/1.4928855http://dx.doi.org/10.1063/1.4928855
PARK Y T, KIM S, HAM S B, et al. Folding-stability criteria of thin-film encapsulation layers for foldable organic light-emitting diodes [J]. Thin Solid Films, 2020, 710: 138277-1-10. doi: 10.1016/j.tsf.2020.138277http://dx.doi.org/10.1016/j.tsf.2020.138277
SEO S W, CHUNG H K, CHAE H, et al. Flexible organic/inorganic moisture barrier using plasma-polymerized layer [J]. Nano, 2013, 8(4): 1350041-1-6. doi: 10.1016/j.tsf.2013.11.072http://dx.doi.org/10.1016/j.tsf.2013.11.072
JEONG E G, HAN Y C, IM H G, et al. Highly reliable hybrid Nano-stratified moisture barrier for encapsulating flexible OLEDs [J]. Org. Electron., 2016, 33: 150-155. doi: 10.1016/j.orgel.2016.03.015http://dx.doi.org/10.1016/j.orgel.2016.03.015
KWON J H, JEONG E G, JEON Y, et al. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers [J]. ACS Appl. Mater. Interfaces, 2019, 11(3): 3251-3261. doi: 10.1021/acsami.8b11930http://dx.doi.org/10.1021/acsami.8b11930
WU J, FEI F, WEI C T, et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers [J]. RSC Adv., 2018, 8(11): 5721-5727. doi: 10.1039/c8ra00023ahttp://dx.doi.org/10.1039/c8ra00023a
SUN F B, DUAN Y, YANG Y Q, et al. Fabrication of tunable [Al2O3∶Alucone] thin-film encapsulations for top-emitting organic light-emitting diodes with high performance optical and barrier properties [J]. Org. Electron., 2014, 15(10): 2546-2552. doi: 10.1016/j.orgel.2014.07.004http://dx.doi.org/10.1016/j.orgel.2014.07.004
XIAO W, HUI D Y, ZHENG C, et al. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers [J]. Nanoscale Res. Lett., 2015, 10: 130-1-7. doi: 10.1186/s11671-015-0838-yhttp://dx.doi.org/10.1186/s11671-015-0838-y
YOON K H, KIM H S, HAN K S, et al. Extremely high barrier performance of organic‐inorganic nanolaminated thin films for organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(6): 5399-5408. doi: 10.1021/acsami.6b15404http://dx.doi.org/10.1021/acsami.6b15404
LEE L, YOON K H, JUNG J W, et al. Ultra gas-proof polymer hybrid thin layer [J]. Nano Lett., 2018, 18(9): 5461-5466. doi: 10.1021/acs.nanolett.8b01855http://dx.doi.org/10.1021/acs.nanolett.8b01855
CHEN Z, WANG H R, WANG X, et al. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes [J]. Sci. Rep., 2017, 7(1): 40061-1-9. doi: 10.1038/srep40061http://dx.doi.org/10.1038/srep40061
SEO S W, JUNG E, LIM C, et al. Water permeation through organic-inorganic multilayer thin films [J]. Thin Solid Films, 2012, 520(21): 6690-6694. doi: 10.1016/j.tsf.2012.07.017http://dx.doi.org/10.1016/j.tsf.2012.07.017
KIM N, GRAHAM S. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics [J]. Thin Solid Films, 2013, 547: 57-62. doi: 10.1016/j.tsf.2013.05.007http://dx.doi.org/10.1016/j.tsf.2013.05.007
WANG L, RUAN C P, LI M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer [J]. J. Mater. Chem. C, 2017, 5(16): 4017-4024. doi: 10.1039/c7tc00903hhttp://dx.doi.org/10.1039/c7tc00903h
JEONG E G, KWON S, HAN J H, et al. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs [J]. Nanoscale, 2017, 9(19): 6370-6379. doi: 10.1039/c7nr01166khttp://dx.doi.org/10.1039/c7nr01166k
华经视点. 2022—2026国内原子层沉积(ALD)设备市场供需状况及行业投资策略分析 [R]. 市场调查网, 2022. doi: 10.21741/9781644902059-9http://dx.doi.org/10.21741/9781644902059-9
Viewpoint of Huajing. 2022—2026 domestic atomic layer deposition(ALD) equipment market supply and demand situation and industry investment strategy analysis [R]. CNSCDC, 2022. (in Chinese). doi: 10.21741/9781644902059-9http://dx.doi.org/10.21741/9781644902059-9
恒州博智. 2021-2027全球原子层沉积设备(ALD)市场分析及发展策略研究预测报告 [R]. 市场调查网, 2021. doi: 10.1515/9783110712537-007http://dx.doi.org/10.1515/9783110712537-007
QYResearch. 2021-2027 global atomic layer deposition equipment(ALD) market analysis and development strategy research forecast report [R]. CNSCDC, 2021. (in Chinese). doi: 10.1515/9783110712537-007http://dx.doi.org/10.1515/9783110712537-007
0
Views
597
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution