浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 Bimberg中德绿色光子学研究中心, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
4.柏林工业大学固体物理研究所 纳米光学中心, 德国 柏林 D‐10623
Published:05 July 2022,
Received:26 March 2022,
Revised:10 April 2022,
移动端阅览
徐汉阳,田思聪,韩赛一等.53 Gbit/s高速单模940 nm垂直腔面发射激光器[J].发光学报,2022,43(07):1114-1120.
XU Han-yang,TIAN Si-cong,HAN Sai-yi,et al.53 Gbit/s High Speed Single Mode 940 nm Vertical-cavity Surface-emitting Laser[J].Chinese Journal of Luminescence,2022,43(07):1114-1120.
徐汉阳,田思聪,韩赛一等.53 Gbit/s高速单模940 nm垂直腔面发射激光器[J].发光学报,2022,43(07):1114-1120. DOI: 10.37188/CJL.20220106.
XU Han-yang,TIAN Si-cong,HAN Sai-yi,et al.53 Gbit/s High Speed Single Mode 940 nm Vertical-cavity Surface-emitting Laser[J].Chinese Journal of Luminescence,2022,43(07):1114-1120. DOI: 10.37188/CJL.20220106.
制备了不同氧化孔径的940 nm垂直腔面发射激光器(VCSEL),选取氧化孔径为3,6,9 μm的VCSEL进行了测试表征分析。氧化孔径为3,6,9 μm的VCSEL的最高输出功率分别为2.92,6.79,10.49 mW,调制带宽分别为27.65,23.34,20.56 GHz。此外,氧化孔径为3 μm的VCSEL在整个工作电流下都可实现单模工作,氧化孔径为6 μm和9 μm的VCSEL在较大电流下呈现少模和多模特性。最后,选取3 μm氧化孔径的VCSEL进行数据传输测试,在非归零(NRZ)码下实现了传输速率53 Gbit/s。
940 nm vertical cavity surface emitting lasers(VCSELs) with different oxidation apertures were prepared. VCSELs with oxidation apertures of 3, 6,9 μm were tested and characterized. The maximum output power of VCSELs with oxidation aperture of 3, 6,9 μm is 2.92, 6.79,10.49 mW, respectively, and the modulation bandwidth of them is 27.65, 23.34, 20.56 GHz, respectively. In addition, VCSELs with an oxidation aperture of 3 μm can achieve single-mode operation under the whole working current, and VCSELs with an oxidation aperture of 6 μm and 9 μm show few mode and multi-mode characteristics under large current.Finally
VCSEL with oxidation apertures of 3 μm is selected for data transmission test
and the transmission rate of 53 Gbit/s under not return to zero(NRZ) is realized.
垂直腔面发射激光器高速单模
vertical cavity surface emitting laser(VCSEL)high speedsingle mode
HUANG C Y, TSAI C T,WENG J H,et al. Temperature and noise dependence of tri-mode VCSEL carried 120-Gbit/s QAM-OFDM data in back-to-back and OM5-MMF links [J]. J. Lightwave Technol., 2020,38(24):6746-6758. doi: 10.1109/jlt.2020.3017798http://dx.doi.org/10.1109/jlt.2020.3017798
MANGASER R,ROSE K. Estimating interconnect performance for a new national technology roadmap for semiconductors [C]. Proceedings of IEEE 1998 International Interconnect Technology Conference,San Francisco,CA,USA, 1998:253-255.
GUSTAVSSON J S,LARSSON A,HAGLUND Å,et al. High speed 850 nm VCSELs for >40 Gb/s transmission [C]. Proceedings of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference,Anaheim,CA,USA, 2013:1-3. doi: 10.1364/ofc.2013.oth4h.4http://dx.doi.org/10.1364/ofc.2013.oth4h.4
CHENG C H,SHEN C C,KAO H Y,et al. 850/940-nm VCSEL for optical communication and 3D sensing [J]. Opto-Electron. Adv., 2018,1(3):180005-1-11. doi: 10.29026/oea.2018.180005http://dx.doi.org/10.29026/oea.2018.180005
LIU A J,WOLF P,LOTT J A,et al. Vertical-cavity surface-emitting lasers for data communication and sensing [J]. Photonics Res., 2019,7(2):121-136. doi: 10.1364/prj.7.000121http://dx.doi.org/10.1364/prj.7.000121
LAVRENCIK J,VARUGHESE S,THOMAS V A,et al. 2λ × 100 Gbps PAM-4 wideband fiber 100 m links using 850 nm and 940 nm VCSELs [C]. Proceedings of 2016 Photonics Conference,Waikoloa,HI,USA, 2016:751-752. doi: 10.1109/ipcon.2016.7831299http://dx.doi.org/10.1109/ipcon.2016.7831299
CHI K L,XIE Z T,SHI J W. High-speed Zn-diffusion/oxide-relief VCSELs with stable high-temperature performance at 940 nm wavelength [C]. Proceedings of 2017 IEEE Photonics Conference,Orlando,FL,USA, 2017:63-64. doi: 10.1109/ipcon.2017.8116008http://dx.doi.org/10.1109/ipcon.2017.8116008
AGUSTIN M,LEDENTSOV JR N,KROPP J R,et al. 50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range [C]. Proceedings of SPIE 10552,Vertical-cavity Surface-emitting Lasers ⅩⅩⅡ,San Francisco,California,United States, 2018:1055202-1-8. doi: 10.1117/12.2289823http://dx.doi.org/10.1117/12.2289823
LAVRENCIK J,VARUGHESE S,THOMAS V A,et al. Scaling VCSEL-MMF links to 1 Tb/s using short wavelength division multiplexing [J]. J. Lightwave Technol., 2018,36(18):4138-4145. doi: 10.1109/jlt.2018.2858208http://dx.doi.org/10.1109/jlt.2018.2858208
CHENG C L,LEDENTSOV N,AGUSTIN M,et al. Ultra-fast Zn-diffusion/oxide-relief 940 nm VCSELs [C]. Proceedings of 2019 Optical Fiber Communications Conference and Exhibition,San Diego,CA,USA, 2019:1-3. doi: 10.1364/ofc.2019.w3a.2http://dx.doi.org/10.1364/ofc.2019.w3a.2
KHAN Z,LEDENTSOV N,CHORCHOS L,et al. Single-mode 940 nm VCSELs with narrow divergence angles and high-power performances for fiber and free-space optical communications [J]. IEEE Access, 2020,8:72095-72101. doi: 10.1109/access.2020.2987818http://dx.doi.org/10.1109/access.2020.2987818
GHOLAMI A,MOLIN D,SILLARD P. Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions [J]. IEEE Photonics Technol. Lett., 2009,21(10):645-647. doi: 10.1109/lpt.2009.2015891http://dx.doi.org/10.1109/lpt.2009.2015891
LARISCH G,ROSALES R,LOTT J A,et al. Energy-efficient VCSELs for 200+ Gb/s optical interconnects [C]. Proceedings of CLEO:Science and Innovations 2019,San Jose,California,United States, 2019:SM4N.7. doi: 10.1364/cleo_si.2019.sm4n.7http://dx.doi.org/10.1364/cleo_si.2019.sm4n.7
LARISCH G,JUAREZ A A,CHEN X,et al. 910 nm single-mode VCSELs and its application for few-mode transmission over graded-index single-mode fibers [C]. Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON),Bari,Italy,2020:1-4. doi: 10.1109/icton51198.2020.9203345http://dx.doi.org/10.1109/icton51198.2020.9203345
WANG H L,QIU J Y,YU X,et al. The modal effect of VCSELs on transmitting data rate over distance in OM4 fiber [J]. IEEE J. Quantum Electron., 2020,56(6):8000106-1-6. doi: 10.1109/jqe.2020.3022360http://dx.doi.org/10.1109/jqe.2020.3022360
刘安金. 单模直调垂直腔面发射激光器研究进展 [J]. 中国激光, 2020,47(7):0701005-1-22. doi: 10.3788/cjl202047.0701005http://dx.doi.org/10.3788/cjl202047.0701005
LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers [J]. Chin. J. Lasers, 2020,47(7):0701005-1-22. (in Chinese). doi: 10.3788/cjl202047.0701005http://dx.doi.org/10.3788/cjl202047.0701005
LIU M,WANG C Y,FENG M,et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs [C]. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition,Anaheim,CA,USA, 2016:1-3. doi: 10.1364/ofc.2016.tu3d.2http://dx.doi.org/10.1364/ofc.2016.tu3d.2
QIU P P,WU B,FU P,et al. Fabrication and characterization of low-threshold single fundamental mode VCSELs with dielectric DBR mirror [J]. IEEE Photonics J., 2021,13(4):1500106-1-6. doi: 10.1109/jphot.2021.3089710http://dx.doi.org/10.1109/jphot.2021.3089710
LARSSON A,WESTBERGH P,GUSTAVSSON J,et al. High-speed VCSELs for short reach communication [J]. Semicond. Sci. Technol., 2011,26(1):014017-1-5. doi: 10.1088/0268-1242/26/1/014017http://dx.doi.org/10.1088/0268-1242/26/1/014017
MOSER P,WOLF P,LARISCH G,et al. Energy-efficient oxide-confined high-speed VCSELs for optical interconnects [C]. Proceedings of SPIE 9001,Vertical-cavity Surface-emitting Lasers ⅩⅤⅢ,San Francisco,California,United States, 2014:9001-1-8. doi: 10.1117/12.2044319http://dx.doi.org/10.1117/12.2044319
李秀山. 垂直腔面发射激光器高阶模式及偏振控制 [D]. 长春:中国科学院长春光学精密机械与物理研究所,2015.
LI X S. Polarization and High-order Mode Control of Vertical Cavity Surface Emitting Lasers [D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2015. (in Chinese)
刘莹莹. 垂直腔面发射激光器的偏振控制及两模面发射激光器的研究 [D]. 长春:中国科学院长春光学精密机械与物理研究所,2019.
LIU Y Y. Study on Polarization Control of Vertical-cavity Surface-emitting Lasers and Two-modes VCSEL [D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2019. (in Chinese)
CHOQUETTE K D,GEIB K M,ASHBY C I H,et al. Advances in selective wet oxidation of AlGaAs alloys [J]. IEEE J. Sel. Top. Quantum Electron., 1997,3(3):916-926. doi: 10.1109/2944.640645http://dx.doi.org/10.1109/2944.640645
PENG C Y,TSAO K,CHENG H T,et al. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser [J]. Opt. Express, 2020,28(21):30748-30759. doi: 10.1364/oe.397878http://dx.doi.org/10.1364/oe.397878
TAUBER D,WANG G,GEELS R S,et al. Large and small signal dynamics of vertical cavity surface emitting lasers [J]. Appl. Phys. Lett., 1993,62(4):325-327. doi: 10.1063/1.108947http://dx.doi.org/10.1063/1.108947
杨卓凯,田思聪,LARISCH Gunter,等. 基于PAM4调制的高速垂直腔面发射激光器研究进展 [J]. 发光学报, 2020,41(4):399-413. doi: 10.3788/fgxb20204104.0399http://dx.doi.org/10.3788/fgxb20204104.0399
YANG Z K,TIAN S C,LARISCH G,et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation [J]. Chin. J. Lumin., 2020,41(4):399-413. (in Chinese). doi: 10.3788/fgxb20204104.0399http://dx.doi.org/10.3788/fgxb20204104.0399
0
Views
275
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution