浏览全部资源
扫码关注微信
北京交通大学光波技术研究所 全光网络与现代通信网教育部重点实验室, 北京 100044
[ "石郑楠(1994-), 女, 河北承德人, 硕士研究生, 2017年于河北经贸大学获得学士学位, 主要从事2 μm波段光纤激光器方面的研究。E-mail:17120111@bjtu.edu.cn" ]
[ "延凤平(1966-), 男, 山西兴县人, 博士, 教授, 1996年于北方交通大学获得博士学位, 主要从事光通信方面的研究。E-mail:fpyan@bjtu.edu.cn" ]
收稿日期:2020-04-11,
录用日期:2020-4-20,
纸质出版日期:2020-06
移动端阅览
石郑楠, 延凤平, 韩文国, 等. 高功率掺Tm3+自相似脉冲激光器的仿真优化设计[J]. 发光学报, 2020,41(6):719-728.
Zheng-nan SHI, Feng-ping YAN, Wen-guo HAN, et al. Optimal Design and Simulation of High Power Tm3+ Self-similar Pulse Laser[J]. Chinese journal of luminescence, 2020, 41(6): 719-728.
石郑楠, 延凤平, 韩文国, 等. 高功率掺Tm3+自相似脉冲激光器的仿真优化设计[J]. 发光学报, 2020,41(6):719-728. DOI: 10.3788/fgxb20204106.0719.
Zheng-nan SHI, Feng-ping YAN, Wen-guo HAN, et al. Optimal Design and Simulation of High Power Tm3+ Self-similar Pulse Laser[J]. Chinese journal of luminescence, 2020, 41(6): 719-728. DOI: 10.3788/fgxb20204106.0719.
利用非线性薛定谔方程(NLSE)为2 μm掺Tm
3+
自相似脉冲激光器建立了一种新的数值模型。模型中,用NLSE描述脉冲在激光器中的产生和传播,利用MATLAB软件模拟了脉冲在激光腔内的演化特性,优化了腔内净色散、增益系数和可饱和吸收体等参数,得到了典型的2 μm自相似脉冲的产生区域和特点。在最佳运行范围内,通过仿真得到了能量为7.87 nJ、脉宽为30.58 ps的具有严格正啁啾的高功率抛物线型脉冲。同时,分析了腔内净色散、增益系数和可饱和吸收体等参数对自相似脉冲产生的影响,并模拟了光栅器件进行色散补偿,使输出脉宽达到547 fs,脉冲峰值功率达到20.85 kW。本文为获得高功率自相似脉冲提供了指导性意见。
A new numerical model for a 2 μm thulium-doped self-similar pulsed laser was established using nonlinear Schr dinger equation (NLSE). In this model
NLSE was used to describe the generation and propagation of the pulse in the laser. The evolution of the pulse in the laser cavity was simulated using MATLAB software. The parameters such as the net dispersion
the gain coefficient and the saturable absorber were optimized. The typical 2 μm self-similar pulse generation area and characteristics were obtained through simulation. In the optimal operating range
a high-power parabolic pulse with strict positive chirp with the energy of 7.87 nJ and the pulse width of 30.58 ps was obtained. At the same time
the effects of parameters such as the net dispersion
the gain coefficient and absorber on the self-similar pulse were analyzed. We simulated the grating for dispersion compensation. The output pulse width reached 547 fs and the pulse peak power reached 20.85 kW. This paper gives guidance for obtaining high-power self-similar pulses.
FRIED N M. Thulium fiber laser lithotripsy:an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94μm[J]. Lasers Surg. Med. , 2005, 37(1):53-58.
SÓJKA L, PAJEWSKI L, POPENDA M, et al.. Experimental investigation of mid-infrared laser action from Dy 3+ doped fluorozirconate fiber[J]. IEEE Photonics Technol. Lett. , 2018, 30(12):1083-1086.
KALAYCIOǦLU H, ELAHI P, AKÇAALAN Ö, et al. . High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE J. Sel. Top. Quantum Electron. , 2018, 24(3):8800312-1-12.
AGRAWAL G P. Nonlinear fiber optics[M]. CHRISTIANSEN P L, SØRENSEN M P, SCOTT A C. Nonlinear Science at The Dawn of The 21st Century . Berlin, Heidelberg:Springer, 2000:195-211.
RICHARDSON D J, LAMING R I, PAYNE D N, et al.. 320 fs soliton generation with passively mode-locked erbium fibre laser[J]. Electron. Lett. , 1991, 27(9):730-732.
ROZHIN A G, SAKAKIBARA Y, NAMIKI S, et al.. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker[J]. Appl. Phys. Lett. , 2006, 88(5):051118-1-3.
POPA D, SUN Z, TORRISI F, et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Appl. Phys. Lett. , 2010, 97(20):203106-1-3.
ANDERSON D, DESAIX M, KARLSSON M, et al.. Wave-breaking-free pulses in nonlinear-optical fibers[J]. J. Opt. Soc. Am. B, 1993, 10(7):1185-1190.
ILDAY F Ö, BUCKLEY J R, CLARK W G, et al.. Self-similar evolution of parabolic pulses in a laser[J]. Phys. Rev. Lett. , 2004, 92(21):213902-1-4.
LIU H, LIU Z W, LAMB E S, et al.. Self-similar erbium-doped fiber laser with large normal dispersion[J]. Opt. Lett. , 2014, 39(4):1019-1021.
TANG Y X, CHONG A, WISE F W. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser[J]. Opt. Lett. , 2015, 40(10):2361-2364.
LIU L S, LI X L, ZHANG S M, et al.. Optimal design of high energy similariton Thulium-doped fiber lasers[C]. Proceedings of The 2019 IEEE 4th Optoelectronics Global Conference , Shenzhen , 2019: 19-22.
HAXSEN F, RUEHL A, ENGELBRECHT M, et al.. Stretched-pulse operation of a thulium-doped fiber laser[J]. Opt. Express , 2008, 16(25):20471-20476.
SOTOR J, BOGUSŁAWSKI J, MARTYNKIEN T, et al.. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber[J]. Opt. Lett. , 2017, 42(8):1592-1595.
WANG Q Q, CHEN T, LI M S, et al.. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes[J]. Appl. Phys. Lett. , 2013, 103(1):011103-1-3.
WIENKE A, HAXSEN F, WANDT D, et al.. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Opt. Lett. , 2012, 37(13):2466-2468.
HAXSEN F, WANDT D, MORGNER U, et al.. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Opt. Lett. , 2012, 37(6):1014-1016.
KADEL R, WASHBURN B R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser[J]. Appl. Opt. , 2015, 54(4):746-750.
PAWLISZEWSKA M, MARTYNKIEN T, PRZEWLOKA A, et al.. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Opt. Lett. , 2018, 43(1):38-41.
SUN B, LUO J Q, ZHANG Y, et al.. 65-fs pulses at 2μm in a compact Tm-doped all-fiber laser by dispersion and nonliearity management[J]. IEEE Photonics Technol. Lett. , 2018, 30(4):303-306.
王大帅.基于被动锁模光纤激光器的自相似脉冲产生与传输理论研究[D].长春: 吉林大学, 2016.
WANG D S. Study on Theory of Self-similar Pulse Generation and Transition Based on Passively Mode Locked Fiber Laser [D]. Changchun: Jilin University, 2016. (in Chinese)
CHONG A, LIU H, NIE B, et al.. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution[J]. Opt. Express , 2012, 20(13):14213-14220.
YANG X L, CHEN Y, ZHAO C J, et al.. Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser[J]. Chin. Opt. Lett. , 2014, 12(3):031405-1-4.
FENG J, XU W C, LIU W C, et al.. Analytical self-similar solutions of the Ginzburg-Landau equation with three-order dispersion effect[J]. Chin. Opt. Lett. , 2010, 8(1):89-92.
LIMPERT J, SCHREIBER T, CLAUSNITZER T, et al.. High-power femtosecond Yb-doped fiber amplifier[J]. Opt. Express , 2002, 10(14):628-638.
李超, 赵磊, 黄志华, 等.自相似脉冲在锁模光纤激光器中产生的理论研究[J].中国激光, 2013, 40(6):0602017-1-6.
LI C, ZHAO L, HUANG Z H, et al.. Theory study on self-similar pulse in mode-locked fiber laser[J]. Chin. J. Lasers , 2013, 40(6):0602017-1-6. (in Chinese)
邓一鑫, 涂成厚, 吕福云.非线性偏振旋转锁模自相似脉冲光纤激光器的研究[J].物理学报, 2009, 58(5):3173-3178.
DENG Y X, TU C H, LV F Y. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser[J]. Acta Phys. Sinica , 2009, 58(5):3173-3178. (in Chinese)
LI X L, ZHANG S M, YANG Z J. Optimal design of similariton fiber lasers without gain-bandwidth limitation[J]. Opt. Express , 2017, 25(15):18410-18420.
RENNINGER W H, CHONG A, WISE F W. Self-similar pulse evolution in an all-normal-dispersion laser[J]. Phys. Rev. A, 2010, 82(2):021805-1-9.
0
浏览量
219
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构