浏览全部资源
扫码关注微信
重庆邮电大学 理学院, 重庆 400065
[ "相国涛(1988-),男,黑龙江佳木斯人,博士,副教授,2016年于中国科学院大学获得博士学位,主要从事稀土上转换发光材料的研究。E-mail: xianggt@cqupt.edu.cn" ]
纸质出版日期:2020-6,
收稿日期:2020-4-8,
录用日期:2020-4-16
扫 描 看 全 文
相国涛, 刘小桐, 夏清, 等. β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+的上转换发光特性[J]. 发光学报, 2020,41(6):679-683.
Guo-tao XIANG, Xiao-tong LIU, Qing XIA, et al. Upconversion Luminescence Properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+[J]. Chinese Journal of Luminescence, 2020,41(6):679-683.
相国涛, 刘小桐, 夏清, 等. β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+的上转换发光特性[J]. 发光学报, 2020,41(6):679-683. DOI: 10.3788/fgxb20204106.0679.
Guo-tao XIANG, Xiao-tong LIU, Qing XIA, et al. Upconversion Luminescence Properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+[J]. Chinese Journal of Luminescence, 2020,41(6):679-683. DOI: 10.3788/fgxb20204106.0679.
利用溶剂热法制备了β-NaYF
4
:20%Yb
3+
/2%Er
3+
核颗粒和β-NaYF
4
:20%Yb
3+
/2%Er
3+
@β-NaYF
4
:
x
%Yb
3+
(
x
=0,20,50,70,100)核壳结构纳米颗粒。在未包覆β-NaYF
4
前,核纳米颗粒的尺寸约为30 nm;在包覆β-NaYF
4
壳层后,纳米颗粒的尺寸增加至40 nm左右,并且上转换绿光和红光分别提高了14倍和25倍。上转换发光强度能够增强如此之多是因为包覆的壳层有效地抑制了处于激发态的Yb
3+
与纳米颗粒表面缺陷之间的能量传递过程。随着壳层中Yb
3+
掺杂浓度的提高,纳米颗粒的尺寸并未发生明显变化,一直保持在40 nm左右。但是,纳米颗粒的上转换发光强度却随着Yb
3+
浓度的提高而明显减弱。由于在980 nm波长的激光辐照时,大部分980 nm的光子会被纳米颗粒壳层中的Yb
3+
所吸收,能够被核中的Yb
3+
所吸收的980 nm光子数目非常少。然而,由于壳层中的Yb
3+
距离核颗粒中的Er
3+
较远,使得二者之间的能量传递效率非常低,从而大大降低了纳米颗粒的上转换发光强度。
In this work
a solvothermal process was used to synthesize the β-NaYF
4
:20%Yb
3+
/2%Er
3+
core nanoparticles(NPs) and β-NaYF
4
:20%Yb
3+
/2%Er
3+
@β-NaYF
4
:
x
%Yb
3+
(
x
=0
20
50
70
100) core-shell NPs. The size of the core NPs and core-shell NPs is about 30 nm and 40 nm respectively
implying that the thickness of the layer is 5 nm. After coating a β-NaYF
4
shell without Yb
3+
doping
the upconversion(UC) intensity is increased with a factor of 14 and 25 for green emission and red emission respectively
resulting from the suppression of deexcitation of Yb
3+
ions by the core-shell structure. However
the UC intensity is decreased dramatically with the increasing Yb
3+
ions concentration in the shell
due to the inefficient energy transfer process between the Yb
3+
ions in the shell and the Er
3+
ions in the core caused by the large distance between them. As the β-NaYF
4
shell completely converts to β-NaYbF
4
the UC intensity decreased 98.8% and 99.4% for green and red emission
respectively.
稀土离子上转换发光能量传递β-NaYF4
rare earthupconversionenergy transferβ-NaYF4
MAI H X, ZHANG Y W, SI R, et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].J. Am. Chem. Soc., 2006, 128(19):6426-6436.
XIANG G T, LIU X T, LIU W, et al.. Multifunctional optical thermometry based on the stark sublevels of Er3+ in CaO-Y2O3:Yb3+/Er3+[J].J. Am. Ceram. Soc., 2020, 103(4):2540-2547.
TENG X, ZHU Y H, WEI W, et al.. Lanthanide-doped NaxScF3+x nanocrystals:Crystal structure evolution and multicolor tuning[J].J. Am. Chem. Soc., 2012, 134(20):8340-8343.
ABEL K A, BOYER J C, VAN VEGGEL F C J M. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure[J].J. Am. Chem. Soc., 2009, 131(41):14644-14645.
QIN W P, LIU Z Y, SIN C N, et al.. Multi-ion cooperative processes in Yb3+ clusters[J].Light:Sci. Appl., 2014, 3:e193.
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J].Chem. Rev., 2004, 104(1):139-174.
WANG Y F, LIU G Y, SUN L D, et al.. Nd3+ sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect[J].ACS Nano, 2013, 7(8):7200-7206.
MEHRABANI S, ARMANI A M. Blue upconversion laser based on thulium-doped silica m icrocavity[J].Opt. Lett., 2013, 38(21):4346-4349.
LUCKY S S, IDRIS N M, LI Z Q, et al.. Titania coated upconversion nanoparticles for near-infrared light triggered photo-dynamic therapy[J].ACS Nano, 2015, 9(1):191-205.
JOHNSON N J J, KORINEK A, DONG C H, et al.. Self-focusing by ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals[J].J. Am. Chem. Soc., 2012, 134(27):11068-11071.
BARRETO J A, O'MALLEY W, KUBEIL M, et al.. Nanomaterials:applications in cancer imaging and therapy[J].Adv. Mater., 2011, 23(12):H18-H40.
LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J].Adv. Mater., 2008, 20(24):4765-4769.
WANG Y F, SUN L D, XIAO J W, et al.. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage[J].Chem. Eur. J., 2012, 18(18):5558-5564.
HUANG Y N, XIAO Q B, HU H S, et al.. 915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes[J].Small, 2016, 12(31):4200-4210.
ZHAN Q Q, QIAN J, LIANG H J, et al.. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation[J].ACS Nano, 2011, 5(5):3744-3757.
XIA A, DENG Y Y, SHI H, et al.. Polypeptide-functionalized NaYF4:Yb3+, Er3+ nanoparticles:red-emission biomarkers for high quality bioimaging using a 915 nm laser[J].ACS Appl. Mater. Interfaces, 2014, 6(20):18329-18336.
WEI Y, LU F Q, ZHANG X R, et al.. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates[J].Chem. Mater., 2006, 18(24):5733-5737.
LI Z Q, ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J].Nanotechnology, 2008, 19(34):345606.
XIANG G T, ZHANG J H, HAO Z D, et al.. Importance of suppression of Yb3+ de-excitation to upconversion enhancement in β-NaYF4:Yb3+/Er3+@β-NaYF4 sandwiched structure nanocrystals[J].Inorg. Chem., 2015, 54(8):3921-3928.
CHEN X P, HUANG X Y, ZHANG Q Y. Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+, Yb3+ phosphor[J].J. Appl. Phys., 2009, 106(6):063518-1-4.
0
浏览量
95
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构