1.山东理工大学 物理与光电工程学院, 山东 淄博 255000
[ "高金霞(1975-), 女, 山东临沂人, 硕士, 讲师, 2006年于长春理工大学获得硕士学位, 主要从事光子带隙材料光学特性及其应用方面的研究。E-mail:gao6117@126.com" ]
扫 描 看 全 文
高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报, 2020,41(5):624-630.
Jin-xia GAO, Yun-lei LAN, Ji-jiang WU. Magnetically Tunable Multi-band Absorption of Graphene Based on Photonic Crystal Heterostructure[J]. Chinese Journal of Luminescence, 2020,41(5):624-630.
高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报, 2020,41(5):624-630. DOI: 10.3788/fgxb20204105.0624.
Jin-xia GAO, Yun-lei LAN, Ji-jiang WU. Magnetically Tunable Multi-band Absorption of Graphene Based on Photonic Crystal Heterostructure[J]. Chinese Journal of Luminescence, 2020,41(5):624-630. DOI: 10.3788/fgxb20204105.0624.
石墨烯在光电子学领域具有广泛应用,但石墨烯的吸收率较低限制了其在某些方面的应用。为了改善单层石墨烯的吸收特性,在前人研究的基础上,设计了石墨烯和光子晶体异质结构构成的复合结构。利用4×4传输矩阵法研究了外磁场、费米能量和设计波长等参数对石墨烯吸收特性的影响。结果表明,所设计的光学结构使石墨烯既保持了原有的宽吸收带,还增加了数目可调的窄吸收带。由于考虑到磁光效应,石墨烯的吸收特性表现出一定的磁圆二色性。对于各吸收带,通常情况下左旋圆偏振光的吸收率要大于右旋圆偏振光的吸收率。但调节外磁场和费米能量,可使各吸收带具有99%以上的吸收,在一定的条件下,还可实现近完美的100%吸收。研究结果为光电子学领域中基于石墨烯的相关器件的设计提供了参考。
Graphene has a wide range of applications in the field of optoelectronics, but its low absorption limits its application in some aspects. In order to improve the absorption performance of single-layer graphene, a composite structure composed of graphene and photonic crystal heterostructure was designed based on previous studies. The influence of external magnetic field, Fermi energy and design wavelength on the absorption spectrum of graphene was numerically studied by 4×4 transfer matrix method. The results show that the designed optical structure not only keeps the original broad absorption band of graphene, but also increases several narrow absorption bands. The number of narrow absorption bands can be adjusted by changing some structure parameters. Due to the magneto-optic effect, the absorption properties of graphene exhibit a certain magnetic circular dichroism. For each absorption band, the absorption of left-handed circularly polarized light is usually higher than that of right-handed circularly polarized light. However, by adjusting the external magnetic field and Fermi energy, each absorption band can have an absorption of more than 99%, and under certain conditions, a near-perfect 100% absorption can be achieved. The results provide a useful reference for the design of graphene-based devices in the field of optoelectronics.
石墨烯光吸收光子晶体磁场传输矩阵法
graphenelight absorptionphotonic crystalsmagnetic fieldstransfer matrix method
LIU J T, LIU N H, LI J, et al.. Enhanced absorption of graphene with one-dimensional photonic crystal[J].Appl. Phys. Lett., 2012, 101(5):052104-1-3.
PERES N M R, BLUDOV Y V. Enhancing the absorption of graphene in the terahertz range[J].EPL (Europhys. Lett.), 2013, 101(5):58002-1-5.
谢凌云, 肖文波, 黄国庆, 等.光子晶体增强石墨烯THz吸收[J].物理学报, 2014, 63(5):057803-1-5.
XIE L Y, XIAO W B, HUANG G Q, et al.. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal[J].Acta Phys. Sinica, 2014, 63(5):057803-1-5. (in Chinese)
ZHAO B, ZHAO J M, ZHANG Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J].Appl. Phys. Lett., 2014, 105(3):031905-1-4.
KANG Y Q, LIU H M, CAO Q Z. Enhanced absorption in heterostructure composed of graphene and a doped photonic crystal[J].Optoelectron. Adv. Mater.-Rapid Commun., 2018, 12(11-12):665-669.
ZHOU K, CHENG Q, SONG J L, et al.. Highly efficient narrow-band absorption of a graphene-based Fabry-Perot structure at telecommunication wavelengths[J].Opt. Lett., 2019, 44(14):3430-3433.
VINCENTI M A, DE CEGLIA D, GRANDE M, et al.. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J].Opt. Lett., 2013, 38(18):3550-3553.
LIU J T, LI X J, WU Y Y, et al.. Effect of thickness deviation on the absorption of graphene in photonic crystal microcavity[J].Optik, 2018, 164:610-616.
ZAND I, DALIR H, CHEN R T, et al.. Multispectral selective near-perfect light absorption by graphene monolayer using aperiodic multilayer microstructures[J].Appl. Phys. Express, 2018, 11(3):035101.
LIU Y J, XIE X, XIE L, et al.. Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect[J].Optik, 2016, 127(9):3945-3948.
RAO W F, ZHANG M T, ZHENG G G. Voltage-controlled enhancement of optical absorption in a graphene monolayer with a one-dimensional photonic crystal[J].Appl. Phys. B, 2017, 123(9):232-1-7.
WANG X, JIANG X, YOU Q, et al.. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene[J].Photonics Res., 2017, 5(6):536-542.
黎志文, 陆华, 李扬武, 等.光学薄膜塔姆态诱导石墨烯近红外光吸收增强[J].光学学报, 2019, 39(1):0131001-1-8.
LI Z W, LU H, LI Y W, et al.. Near-infrared light absorption enhancement in graphene induced by the Tamm state in optical thin films[J].Acta Opt. Sinica, 2019, 39(1):0131001-1-8. (in Chinese)
张晓金, 梁龙学, 吴小所, 等.二维光子晶体全光异或门的设计及研究[J].发光学报, 2018, 39(12):1772-1777.
ZHANG X J, LIANG L X, WU X S, et al.. Design and study of whole optical XOR logic gate of two dimensional photonic crystals[J].Chin. J. Lumin., 2018, 39(12):1772-1777. (in Chinese)
赵亚丽, 马富花, 贾琨, 等.金属光子晶体的可见光光谱特性[J].发光学报, 2019, 40(8):1001-1010.
ZHAO Y L, MA F H, JIA K, et al.. Optical characteristics of metallic photonic crystals[J].Chin. J. Lumin., 2019, 40(8):1001-1010. (in Chinese)
RASHIDI A, NAMDAR A, ABDI-GHALEH R. Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals[J].Appl. Opt., 2017, 56(21):5914-5919.
RASHIDI A, NAMDAR A, HATEF A. Magnetic field induced enhanced absorption using a gated graphene/1D photonic crystal hybrid structure:quantum regime[J].Opt. Mater., 2018, 83:73-77.
RASHIDI A, NAMDAR A. Optical response of graphene/1D double-periodic quasi-crystals in the terahertz region under magnetic and electric biases[J].Opt. Quant. Electron., 2018, 50(7):279-1-9.
ABDI-GHALEH R, NAMDAR A. Circular polarization bandpass filters based on one-dimensional magnetophotonic crystals[J].J. Mod. Opt., 2013, 60(19):1619-1626.
AGRAWAL M, PEUMANS P. Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells[J].Opt. Express, 2008, 16(8):5385-5396.
0
浏览量
23
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构