浏览全部资源
扫码关注微信
1.国家能源集团 绿色能源与建筑研究中心, 北京 102211
2.北京低碳清洁能源研究院, 北京 102211
[ "汤洋(1983-),男,吉林省吉林市人,博士,高级工程师,2011年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事太阳能电池与光伏建筑一体化方面的研究。" ]
纸质出版日期:2020-5,
收稿日期:2020-2-23,
录用日期:2020-3-4
扫 描 看 全 文
汤洋. 硝酸铟诱导的电沉积氧化锌纳米柱光学性质裁剪[J]. 发光学报, 2020,41(5):571-578.
Yang TANG. In(NO3)3 Induced Tailoring of ZnO Nanorods' Optical Properties by Electrodeposition[J]. Chinese Journal of Luminescence, 2020,41(5):571-578.
汤洋. 硝酸铟诱导的电沉积氧化锌纳米柱光学性质裁剪[J]. 发光学报, 2020,41(5):571-578. DOI: 10.3788/fgxb20204105.0571.
Yang TANG. In(NO3)3 Induced Tailoring of ZnO Nanorods' Optical Properties by Electrodeposition[J]. Chinese Journal of Luminescence, 2020,41(5):571-578. DOI: 10.3788/fgxb20204105.0571.
为在新型太阳能电池等光电器件中应用ZnO纳米结构,需要对ZnO纳米结构阵列的几何形貌及光电物理性质进行裁剪与操控。采用电化学沉积路线制备ZnO纳米柱阵列,In(NO
3
)
3
与NH
4
NO
3
两种盐类被溶入在传统Zn(NO
3
)
2
主电解液中。对ZnO纳米柱阵列进行扫描电子显微镜、透射反射光谱、光致发光光谱测试,分析其形貌与光电物理性质。随着引入的In(NO
3
)
3
浓度的增加,ZnO纳米柱阵列的平均直径随之由57 nm减小至30 nm。同时ZnO纳米柱的阵列密度也可降低,进而增大纳米柱间距至41 nm。由于新的盐类的引入,ZnO纳米柱的光学带隙由3.46 eV蓝移至3.55 eV。随着电解液中In(NO
3
)
3
的增加,ZnO纳米柱的斯托克斯位移由198 meV减小至154 meV,ZnO纳米柱中的非辐射复合可以得到一定程度的抑制。通过在主电解液中引入In(NO
3
)
3
与NH
4
NO
3
两种盐类,可对ZnO纳米柱的直径、密度、间距、透射反射率、光学带隙、近带边发射与非辐射复合进行操控与裁剪。
In order to implant ZnO nanostructures in new optoelectronic devices such as solar cells
it is necessary to tailor and control the ZnO nanorod arrays' morphology
optical and electrical properties. The ZnO nanorod arrays were fabricated by electrodeposition. In(NO
3
)
3
and NH
4
NO
3
were incorporated in the basic Zn(NO
3
)
2
electrolytes. The characterizations of the ZnO nanorods including the scanning electron microscopy
tranmission spectra
reflection spectra and photoluminescence were used to analyze the ZnO nanorods' morphology
optical and electrical properties. The ZnO nanorods' average diameter was decreased from 57 nm to 30 nm with increasing the In(NO
3
)
3
concentration. The reduce of the ZnO nanorods' density resulted in the increase of the distance between nanorods to 41 nm. The ZnO nanorods' optical band showed blue shift from 3.46 eV to 3.55 eV. The Stokes shift in ZnO nanorods was reduced from 198 meV to 154 meV with the increase in the In(NO
3
)
3
concentration
indicating the suppression of the nonradiative recombination. The ZnO nanorods' physical properties such as the diameter
density
distance
transmission
reflection
optical band gap energy
near band edge emission and nonradiative recombination can be controlled and tailored by incorporating In(NO
3
)
3
and NH
4
NO
3
in the basic Zn(NO
3
)
2
electrolytes.
氧化锌硝酸铟电沉积带隙蓝移非辐射复合
ZnOindium nitrateelectrodepositionband gap blue shiftnonradiative recombination
郑高峰, 何广奇, 刘海燕, 等.电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J].光学精密工程, 2014, 22(6):1555-1561.
ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J].Opt. Precision Eng., 2014, 22(6):1555-1561. (in Chinese)
胡轶, 胡更新, 张洁静, 等. ZnO纳米棒/CdS量子点的制备及紫外-可见探测性能研究[J].中国光学, 2019, 12(6):1271-1278.
HU Y, HU G X, ZHANG J J, et al.. Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-visible waveband[J].Chin. Opt., 2019, 12(6):1271-1278. (in Chinese)
康冬茹, 叶芸, 汪江胜, 等.图形化氧化锌阵列的制备及其场发射性能研究[J].液晶与显示, 2017, 32(5):367-371.
KANG D R, YE Y, WANG J S, et al.. Fabrication and field emission properties of patterned ZnO arrays[J].Chin. J. Liq. Cryst. Disp., 2017, 32(5):367-371. (in Chinese)
孙义, 李青.基于化学溶液法制备的氧化锌量子点发光二极管研究[J].液晶与显示, 2016, 31(7):635-642.
SUN Y, LI Q. Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions[J].Chin. J. Liq. Cryst. Disp., 2016, 31(7):635-642. (in Chinese)
陈国炜, 朱荣.基于氧化锌纳米线的硅谐振式加速度计[J].光学精密工程, 2009, 17(6):1279-1285.
CHEN G W, ZHU R. Silicon micromachined resonant accelerometer based on ZnO nanowire[J].Opt.Precision Eng., 2009, 17(6):1279-1285. (in Chinese)
赵海霞, 方铉, 王颜彬, 等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究[J].中国光学, 2019, 12(4):872-879.
ZHAO H X, FANG X, WANG Y B, et al.. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations[J].Chin. Opt., 2019, 12(4):872-879. (in Chinese)
SU S C, YANG X D, HU C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates[J].J.Semicond., 2011, 32(7):074008.
SUN X Y, AZAD F, WANG S P, et al.. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J].Nano. Res. Lett., 2018, 13(1):277-1-8.
GAO S Y, ZHANG J J, LI W Q, et al.. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties[J].Chem. Phys. Lett., 2018, 692:14-18.
AMANY A, WANG D B, WANG J Z, et al.. Enhanced the UV response of AlN coated ZnO nanorods photodetector[J].J. Alloys Compd., 2019, 776:111-115.
KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J].Curr. Appl. Phys., 2010, 10(3):S459-S462.
LUKA G, WITKOWSKI B S, WACHNICKI L, et al.. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J].Mater. Sci. Eng.:B, 2014, 186:15-20.
COMAN T, URSU E L, NICA V, et al.. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J].Thin Solid Films, 2014, 571:198-205.
EVCIMEN DUYGULU N, KODOLBAS A O, EKERIM A.Effects of argon pressure and r.f.power on magnetron sputtered aluminum doped ZnO thin films[J].J. Cryst. Growth, 2014, 394:116-125.
KUMAR A, HUANG N, STAEDLER T, et al.. Mechanical characterization of aluminum doped zinc oxide (Al:ZnO) nanorods prepared by sol-gel method[J].Appl. Surf. Sci., 2013, 265:758-763.
CHEN Z W, ZHAN G H, WU Y P, et al.. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J].J. Alloys Compd., 2014, 587:692-697.
汤洋, 赵颖, 张增光, 等.氧化锌纳米柱阵列的水热合成及其性能[J].材料研究学报, 2015, 29(7):529-534.
TANG Y, ZHAO Y, ZHANG Z G, et al.. Hydrothermal synthesis and properties of ZnO nanorod arrays[J].Chin. J. Mater. Res., 2015, 29(7):529-534. (in Chinese)
汤洋, 陈颉.电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移[J].发光学报, 2014, 35(10):1165-1171.
TANG Y, CHEN J. Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J].Chin. J. Lumin., 2014, 35(10):1165-1171. (in Chinese)
CHEN J, YE H, AÉ L, et al.. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J].Sol. Energy Mater. Sol. Cell, 2011, 95(6):1437-1440.
RIEDEL W, TANG Y, OHM W, et al.. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J].Thin Solid Films, 2015, 574:177-183.
GUO L D, TANG Y, CHIANG F K, et al.. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J].Thin Solid Films, 2017, 638:426-432.
汤洋, 郭逦达, 张增光, 等.硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J].光学精密工程, 2015, 23(5):1288-1296.
TANG Y, GUO L D, ZHANG Z G, et al.. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J].Opt. Precision Eng., 2015, 23(5):1288-1296. (in Chinese)
TANG Y, CHEN J, GREINER D, et al.. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J].J. Phys. Chem. C, 2011, 115(13):5239-5243.
MAHAMUNI S, BORGOHAIN K, BENDRE B S, et al.. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots[J].J. Appl. Phys., 1999, 85(5):2861-2865.
0
浏览量
45
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构