浏览全部资源
扫码关注微信
1.河北工业大学 材料科学与工程学院, 天津 300130
2.Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi, MS 39217, USA
3.吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
[ "朱立华(1994-),男,河北秦皇岛人,硕士研究生,2018年于河北建筑工程学院获得学士学位,主要从事钙钛矿太阳能电池中新型电子传输材料的开发与研究。E-mail: E-mail:ZHULIHUA94@163.com" ]
[ "陈聪(1990-),男,吉林长春人,博士,副教授,2019年于吉林大学获得博士学位,主要从事高效与长时稳定的钙钛矿太阳能电池的研究。E-mail:chencong@hebut.edu.cn" ]
[ "宋宏伟(1967-), 男,黑龙江阿城人,博士,教授,博士研究生导师,1996年于中国科学院长春物理研究所获得博士学位,主要从事稀土发光材料物理、光电子及生物应用的研究。E-mail:songhw@jlu.edu.cn " ]
收稿日期:2020-03-01,
录用日期:2020-4-2,
纸质出版日期:2020-05
移动端阅览
朱立华, 商雪妮, 雷凯翔, 等. 应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展[J]. 发光学报, 2020,41(5):481-497.
Li-hua ZHU, Xue-ni SHANG, Kai-xiang LEI, et al. Research Progress of Metal Oxide Electron Transporting Materials Applied in Perovskite Solar Cells[J]. Chinese journal of luminescence, 2020, 41(5): 481-497.
朱立华, 商雪妮, 雷凯翔, 等. 应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展[J]. 发光学报, 2020,41(5):481-497. DOI: 10.3788/fgxb20204105.0481.
Li-hua ZHU, Xue-ni SHANG, Kai-xiang LEI, et al. Research Progress of Metal Oxide Electron Transporting Materials Applied in Perovskite Solar Cells[J]. Chinese journal of luminescence, 2020, 41(5): 481-497. DOI: 10.3788/fgxb20204105.0481.
基于有机金属卤化铅钙钛矿材料作为光活性层的太阳能电池(PSCs)已经获得了25.2%的认证效率,是除硅基太阳能电池外被认为最有可能实现商业化的太阳能电池之一。电子传输层是PSCs器件结构的最基本组成之一,其构成材料与光活性层的成膜质量、界面电荷的快速提取以及能级匹配等密切相关。因而,电子传输材料在PSCs的光伏性能及稳定性调控方面发挥着重要作用。本文对应用在PSCs中的金属氧化物电子传输材料进行了回顾与总结,着重强调了材料的纳米结构与制备工艺、半导体特性与分类以及掺杂与界面修饰等方面的研究进展,并对其今后的发展进行了展望。
Perovskite solar cells (PSCs) based on organic metal halide perovskite materials as photoactive layer have been obtained a certified power conversion efficiency of 25.2% and are considered to be one of the most commercially viable solar cells. In the device structure of PSCs
the electron transporting layer is one of the most basic components. The selection of the electron transporting materials is closely related to the film quality of the photoactive layer
the rapid extraction of interface charge and the matching of bandgaps. Therefore
the electron transporting materials play an important role in the regulating the photovoltaic performance and stability of PSCs. This paper reviews and summarizes the research progress of metal oxide electron transporting materials applied in PSCs
emphasizes the nanostructure and preparation process
photoelectric characteristics and classification
doping and surface modification of metal oxide electron transport materials
and looks forward to its future development.
CHEN J B, DONG H, ZHANG L, et al.. Graphitic carbon nitride doped SnO 2 enabling efficient perovskite solar cells with PCEs exceeding 22%[J]. J. Mater. Chem. A, 2020, 8(5):2644-2653.
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc. , 2009, 131(17):6050-6051.
NREL. The National Renewable Energy Laboratory is a national laboratory of the U.S.[EB/OL].[2020-03-10] . https://www.nrel.gov/ https://www.nrel.gov/ .
CHEN W, SHI Y Q, WANG Y, et al.. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%[J]. Nano Energy , 2020, 68:104363.
TAVAKOLI M M, YADAV P, TAVAKOLI R, et al.. Surface engineering of TiO 2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability[J] . Adv. Energy Mater. , 2018, 8:1800794-1-9.
REHMAN F, MAHMOOD K, KHALID A, et al.. Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials:toward stable perovskite solar cells with high efficiency of over 20.5%[J]. J. Colloid Interface Sci. , 2019, 535:353-362.
WANG P Y, LI R J, CHEN B B, et al.. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Adv. Mater. , 2020, 32(6):1905766.
LUO J, WANG Y X, ZHANG Q F. Progress in perovskite solar cells based on ZnO nanostructures[J]. Solar Energy , 2018, 163:289-306.
ZHEN C, WU T T, CHEN R Z, et al.. Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells[J]. ACS Sustainable Chem. Eng. , 2019, 7(5):4586-4618.
CHEN Y C, MENG Q, ZHANG L R, et al.. SnO 2 -based electron transporting layer materials for perovskite solar cells:a review of recent progress[J]. J. Energy Chem. , 2019, 35:144-167.
MA J J, ZHENG X L, LEI H W, et al.. Highly efficient and stable planar perovskite solar cells with large-scale manufacture of E-beam evaporated SnO 2 toward commercialization[J]. Solar RRL , 2017, 1(10):1700118.
CHEN D Z, SU A X, LI X Y, et al.. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO 2 electron transport layer and interfacial modifier[J]. Solar Energy , 2019, 188:239-246.
CHEN C, CHENG Y, DAI Q L, et al.. Radio frequency magnetron sputtering deposition of TiO 2 thin films and their perovskite solar cell applications[J]. Sci. Rep. , 2016, 5:17684-1-12.
RYU G I, KIM B, KO S G, et al.. Effects of chemical bath-deposited TiO 2 compact layer on the performance of the fully screen-printable hole-transport material-free mesoscopic perovskite solar cells with a carbon electrode[J]. J. Electron. Mater. , 2019, 48(9):5857-5864.
LIU C, ZHANG L Z, ZHOU X Y, et al.. Hydrothermally treated SnO 2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%[J]. Adv. Funct. Mater. , 2019, 29(47):1807604.
YANG D, YANG R X, WANG K, et al.. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2 [J]. Nat. Commun. , 2018, 9:3239-1-11.
HAGFELDT A, BOSCHLOO G, SUN L C, et al.. Dye-sensitized solar cells[J]. Chem. Rev. , 2010, 110(11):6595-6663.
ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science , 2014, 345(6196):542-546.
QIU J H, QIU Y C, YAN K Y, et al.. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO 2 nanowire arrays[J]. Nanoscale , 2013, 5(8):3245-3248.
LIU C W, ZHU R X, NG A, et al.. Investigation of high performance TiO 2 nanorod array perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(30):15970-15980.
YANG H Y, RHO W Y, LEE S K, et al.. TiO 2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells[J]. Nanomaterials , 2019, 9(3):326-1-10.
YANG L K, WANG X, MAI X M, et al.. Constructing efficient mixed-ion perovskite solar cells based on TiO 2 nanorod array[J]. J. Colloid Interface Sci. , 2019, 534:459-468.
YELLA A, HEINIGER L P, GAO P, et al.. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency[J]. Nano Lett. , 2014, 14(5):2591-2596.
GIORDANO F, ABATE A, BAENA J P C, et al.. Enhanced electronic properties in mesoporous TiO 2 via lithium doping for high-efficiency perovskite solar cells[J]. Nat. Commun. , 2016, 7:10379-1-6.
BI W B, WU Y J, ZHANG B X, et al.. Enhancing photostability of perovskite solar cells by Eu(TTA) 2 (Phen)MAA interfacial modification[J]. ACS Appl. Mater. Interfaces , 2019, 11(12):11481-11487.
JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor[J]. Rep. Prog. Phys. , 2009, 72(12):126501-1-29.
ZHANG P, WU J, ZHANG T, et al.. Perovskite solar cells with ZnO electron-transporting materials[J]. Adv. Mater. , 2018, 30(3):1703737-1-20.
NAM S, VU T K, LE D T, et al.. Low-temperature solution process of al-doped zno nano-flakes for flexible perovskite solar cells[J]. J. Electrochem. Sci. Technol. , 2018, 9(2):118-125.
PAUPORTÉ T. Synthesis of ZnO nanostructures for solar cells-a focus on dye-sensitized and perovskite solar cells[M]. LIRA-CANTU M. The Future of Semiconductor Oxides in Next-generation Solar Cells , Amsterdam: Elsevier, 2018: 3-43.
MAHMOOD K, KHALID A, MEHRAN M T. Nanostructured zno electron transporting materials for hysteresis-free perovskite solar cells[J]. Solar Energy , 2018, 173:496-503.
ZHENG Y Z, ZHAO E F, MENG F L, et al.. Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24%[J]. J. Mater. Chem. A, 2017, 5(24):12416-12425.
KUMAR M H, YANTARA N, DHARANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chem. Commun. , 2013, 49(94):11089-11091.
ZHENG D, WANG G, HUANG W, et al.. Combustion synthesized zinc oxide electron-transport layers for efficient and stable perovskite solar cells[J]. Adv. Funct. Mater. , 2019, 29(16):1900265-1-10.
CAO J, WU B H, CHEN R H, et al.. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer:effect of surface passivation[J]. Adv. Mater. , 2018, 30:1705596.
SI H N, LIAO Q L, ZHANG Z, et al.. An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for improving the performance and stability[J]. Nano Energy , 2016, 22:223-231.
HAN G S, SHIM H W, LEE S, et al.. Low-temperature modification of ZnO nanoparticles film for electron-transport layers in perovskite solar cells[J]. ChemSusChem , 2017, 10(11):2425-2430.
SONG J X, HU W D, WANG X F, et al.. HC(NH 2 ) 2 Pbi 3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(21):8435-8443.
YANG G, LEI H W, TAO H, et al.. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO 2 nanosheets as electron selective layers[J]. Small , 2017, 13(2):1601769.
MAHMOOD K, KHALID A, NAWAZ F, et al.. Low-temperature electrospray-processed SnO 2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells[J]. J. Colloid Interface Sci. , 2018, 532:387-394.
GAO C M, YUAN S, CAO B Q, et al.. SnO 2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells[J]. Chem. Eng. J. , 2017, 325:378-385.
BAI Y, FANG Y J, DENG Y H, et al.. Low temperature solution-processed Sb:SnO 2 nanocrystals for efficient planar perovskite solar cells[J]. ChemSusChem , 2016, 9(18):2686-2691.
MANSPEAKER C, SCRUGGS P, PREISS J, et al.. Reliable annealing of CH 3 NH 3 PBI 3 films deposited on ZnO[J]. J. Phys. Chem. C, 2016, 120(12):6377-6382.
ZHU Z L, ZHENG X L, BAI Y, et al.. Mesoporous SnO 2 single crystals as an effective electron collector for perovskite solar cells[J]. Phys. Chem. Chem. Phys. , 2015, 17(28):18265-18268.
LEE J H, SHIN D, RHEE R, et al.. Band alignment engineering between planar SnO 2 and halide perovskites via two-step annealing[J]. J. Phys. Chem. Lett. , 2019, 10(21):6545-6550.
GUO F W, SUN X Y, LIU B, et al.. Enhanced lifetime and photostability with low-temperature mesoporous ZNTiO 3 /compact SnO 2 electrodes in perovskite solar cells[J]. Angew. Chem. Int. Ed. , 2019, 58(51):18460-18465.
ANARAKI E H, KERMANPUR A, STEIER L, et al.. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy Environ. Sci. , 2016, 9(10):3128-3134.
WANG S, ZHU Y, LIU B, et al.. Introduction of carbon nanodots into SnO 2 electron transport layer for efficient and UV stable planar perovskite solar cells[J]. J. Mater. Chem. A, 2019, 7(10):5353-5362.
FENG J S, YANG Z, YANG D, et al.. E-beam evaporated Nb 2 O 5 as an effective electron transport layer for large flexible perovskite solar cells[J]. Nano Energy , 2017, 36:1-8.
WANG Z H, LOU J J, ZHENG X J, et al.. Solution processed Nb 2 O 5 electrodes for high efficient ultraviolet light stable planar perovskite solar cells[J]. ACS Sustainable Chem. Eng. , 2019, 7(7):7421-7429.
ALI F, PHAM N D, FAN L J, et al.. Low hysteresis perovskite solar cells using an electron-beam evaporated WO 3-x thin film as the electron transport layer[J]. ACS Appl. Energy Mater. , 2019, 2(8):5456-5464.
GHENO A, THU PHAM T T, DI BIN C, et al.. Printable WO 3 electron transporting layer for perovskite solar cells:influence on device performance and stability[J]. Solar Energy Mater. Solar Cells , 2017, 161:347-354.
JOHANSSON M B, MATTSSON A, LINDQUIST S E, et al.. The importance of oxygen vacancies in nanocrystalline WO 3-x thin films prepared by DC magnetron sputtering for achieving high photoelectrochemical efficiency[J]. J. Phys. Chem. C, 2017, 121(13):7412-7420.
QIN P L, FANG G J, SUN N H, et al.. P-type indium oxide thin film for the hole-transporting layer of organic solar cells[J]. Thin Solid Films , 2012, 520(7):3118-3124.
QIN M C, MA J J, KE W J, et al.. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers[J]. ACS Appl. Mater. Interfaces , 2016, 8(13):8460-8466.
CHEN P, YIN X T, QUE M D, et al.. Bilayer photoanode approach for efficient In 2 O 3 based planar heterojunction perovskite solar cells[J]. J. Alloys Compd. , 2018, 735:938-944.
HU W, LIU T, YIN X W, et al.. Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis[J]. J. Mater. Chem. A, 2017, 5(4):1434-1441.
GRÄTZEL M. Photoelectrochemical cells[J]. Nature , 2001, 414(6861):338-344.
BOUHJAR F, MOLLAR M, ULLAH S, et al.. Influence of a compact α-Fe 2 O 3 layer on the photovoltaic performance of perovskite-based solar cells[J]. J. Electrochem. Soc. , 2018, 165(2):H30-H38.
LUO Q, CHEN H J, LIN Y Z, et al.. Discrete iron(Ⅲ) oxide nanoislands for efficient and photostable perovskite solar cells[J]. Adv. Funct. Mater. , 2017, 27(34):1702090-1-9.
ZHAO F, GUO Y X, WANG X, et al.. Enhanced performance of carbon-based planar CsPbBr 3 perovskite solar cells with room-temperature sputtered Nb 2 O 5 electron transport layer[J]. Solar Energy , 2019, 191:263-271.
DONG J, WU J H, JIA J B, et al.. Annealing-free Cr 2 O 3 electron-selective layer for efficient hybrid perovskite solar cells[J]. ChemSusChem , 2018, 11(3):619-628.
VANGELISTA S, PIAGGE R, EK S, et al.. Structural, chemical and optical properties of cerium dioxide film prepared by atomic layer deposition on TiN and Si substrates[J]. Thin Solid Films , 2017, 636:78-84.
WANG X, DENG L L, WANG L Y, et al.. Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature[J]. J. Mater. Chem. A, 2017, 5(4):1706-1712.
PANDEY R, SAINI A P, CHAUJAR R. Numerical simulations:toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL[J] . Vacuum , 2019, 159:173-181.
HU Q, WU J, JIANG C, et al.. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%[J]. ACS Nano , 2014, 8(10):10161-10167.
SHIN S S, YANG W S, NOH J H, et al.. High-performance flexible perovskite solar cells exploiting Zn 2 SnO 4 prepared in solution below 100℃[J]. Nat. Commun. , 2015, 6:7410-1-8.
DOU J, SHEN D L, LI Y F, et al.. Highly efficient perovskite solar cells based on a Zn 2 SnO 4 compact layer[J]. ACS Appl. Mater. Interfaces , 2019, 11(40):36553-36559.
KIM Y M, PARK C, KIM U, et al.. High-mobility BaSnO 3 thin-film transistor with HfO 2 gate insulator[J]. Appl. Phys. Express , 2016, 9:011201.
KIM H J, KIM U, KIM H M, et al.. High mobility in a stable transparent perovskite oxide[J]. Appl. Phys. Express , 2012, 5(6):061102-1-3.
SHIN S S, YEOM E J, YANG W S, et al.. Colloidally prepared la-doped BaSnO 3 electrodes for efficient, photostable perovskite solar cells[J]. Science , 2017, 356(6334):167-171.
LIN W N, DING J F, WU S X, et al.. Electrostatic modulation of LaAlO 3 /SrTiO 3 interface transport in an electric double-layer transistor[J]. Adv. Mater. Interfaces , 2014, 1(1):1300001-1-7.
BERA A, WU K W, SHEIKH A, et al.. Perovskite oxide SrTiO 3 as an efficient electron transporter for hybrid perovskite solar cells[J]. J. Phys. Chem. C, 2014, 118(49):28494-28501.
NEOPHYTOU M, DE BASTIANI M, GASPARINI N, et al.. Enhancing the charge extraction and stability of perovskite solar cells using strontium titanate (SrTiO 3 ) electron transport layer[J]. ACS Appl. Energy Mater. , 2019, 2(11):8090-8097.
MALI S S, SHIM C S, HONG C K. Highly porous zinc stannate (Zn 2 SnO 4 ) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells[J]. Sci. Rep. , 2015, 5:11424-1-14.
ZHU L Z, YE J J, ZHANG X H, et al.. Performance enhancement of perovskite solar cells using a La-doped BaSnO 3 electron transport layer[J]. J. Mater. Chem. A, 2017, 5(7):3675-3682.
OKAMOTO Y, SUZUKI Y. Mesoporous BaTiO 3 /TiO 2 double layer for electron transport in perovskite solar cells[J]. J. Phys. Chem. C, 2016, 120(26):13995-14000.
XIAO G N, SHI C W, LV K, et al.. Nb-doping TiO 2 electron transporting layer for efficient perovskite solar cells[J]. ACS Appl. Energy Mater. , 2018, 1(6):2576-2581.
NUMATA Y, ISHIKAWA R, SANEHIRA Y, et al.. Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication[J]. J. Mater. Chem. A, 2018, 6(20):9583-9591.
HOU X, ZHOU J P, HUANG S M, et al.. Efficient quasi-mesoscopic perovskite solar cells using li-doped hierarchical TiO 2 as scaffold of scattered distribution[J]. Chem. Eng. J. , 2017, 330:947-955.
XIAO W, PU W H, WANG J W, et al.. Theoretical investigation of the structural and electronic properties of Al-decorated TiO 2 /perovskite interfaces[J]. Appl. Surf. Sci. , 2019, 492:369-373.
CHEN C, LI H, JIN J J, et al.. Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer[J]. Nano Energy , 2017, 32:165-173.
DENG X L, WANG Y Q, CHEN Y, et al.. Yttrium-doped TiO 2 compact layers for efficient perovskite solar cells[J]. J. Solid State Chem. , 2019, 275:206-209.
XU Z, WU J H, WU T Y, et al.. Tuning the fermi level of TiO 2 electron transport layer through europium doping for highly efficient perovskite solar cells[J]. Energy Technol. , 2017, 5(10):1820-1826.
XU Z H, TEO S H, GAO L G, et al.. La-doped SnO 2 as ETL for efficient planar-structure hybrid perovskite solar cells[J] . Org. Electron. , 2019, 73:62-68.
JIN J J, LI H, BI W B, et al.. Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO 2 electron transport layer, ultraviolet conversion layer CsPbBr 3 and the encapsulation layer Al 2 O 3 [J]. Solar Energy , 2020, 198:187-193.
CHEN C, LIU D L, WU Y J, et al.. Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells[J]. Nano Energy , 2018, 53:849-862.
ZHANG B X, SONG Z L, JIN J J, et al.. Efficient rare earth co-doped TiO 2 electron transport layer for high-performance perovskite solar cells[J]. J. Colloid Interface Sci. , 2019, 553:14-21.
DENG X L, WANG Y Q, CUI Z D, et al.. Y-doping TiO 2 nanorod arrays for efficient perovskite solar cells[J]. Superlatt. Microstr. , 2018, 117:283-287.
RAKNUAL D, SUTTIYARAK P, TUBTIMTAE A, et al.. Effect of indium doping in Nb 2 O 5 thin films for electron transport layers:investigation of structural, optical, and electrical properties[J]. Mater. Lett. , 2020, 259:126828.
CUI Q, ZHAO X C, LIN H, et al.. Improved efficient perovskite solar cells based on ta-doped TiO 2 nanorod arrays[J]. Nanoscale , 2017, 9(47):18897-18907.
SHIN S G, KIM S, BARK C W, et al.. Characterization of perovskite solar cell with Fe 3+ doped TiO 2 layer[J]. J. Nanosci. Nanotechnol. , 2020, 20(1):552-556.
WU M C, CHAN S H, JAO M H, et al.. Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO 2 as electron transport layer[J]. Solar Energy Mater. Solar Cells , 2016, 157:447-453.
TAN H R, JAIN A, VOZNYY O, et al.. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science , 2017, 355(6326):722-726.
MALI S S, PATIL J V, ARANDIYAN H, et al.. Reduced methylammonium triple-cation Rb 0.05 (FAPBI 3 ) 0.95 (MAPbBr 3 ) 0.05 perovskite solar cells based on a TiO 2 /SnO 2 bilayer electron transport layer approaching a stabilized 21% efficiency:the role of antisolvents[J]. J. Mater. Chem. A, 2019, 7(29):17516-17528.
KUMARI N, GOHEL J V, PATEL S R. Optimization of TiO 2 /ZnO bilayer electron transport layer to enhance efficiency of perovskite solar cell[J]. Mater. Sci. Semicond. Processing , 2018, 75:149-156.
LI Z X, WANG R, XUE J J, et al.. Core-shell ZnO@SnO 2 nanoparticles for efficient inorganic perovskite solar cells[J]. J. Am. Chem. Soc. , 2019, 141(44):17610-17616.
MOHAMADKHANI F, JAVADPOUR S, TAGHAVINIA N. Improvement of planar perovskite solar cells by using solution processed SnO 2 /cds as electron transport layer[J]. Solar Energy , 2019, 191:647-653.
MAHMOUDI T, WANG Y S, HAHN Y B. SrTiO 3 /Al 2 O 3 -graphene electron transport layer for highly stable and efficient composites-based perovskite solar cells with 20.6% efficiency[J]. Adv. Energy Mater. , 2020, 10(2):1903369-1-9.
ZHU P C, GU S, LUO X, et al.. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO 2 -KCL composite electron transport layer[J]. Adv. Energy Mater. , 2020, 10(3):1903083.
ZHANG J Q, TAN C H, DU T, et al.. ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells[J]. Sci. Bull. , 2018, 63(6):343-348.
KE W J, ZHAO D W, XIAO C X, et al.. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(37):14276-14283.
QIU W M, BUFFIÈRE M, BRAMMERTZ G, et al.. High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step[J]. Org. Electron. , 2015, 26:30-35.
ZHOU Y Q, WU B S, LIN G H, et al.. Interfacing pristine C 60 onto TiO 2 for viable flexibility in perovskite solar cells by a low-temperature all-solution process[J] . Adv. Energy Mater. , 2018, 8:1800399.
PANG S Z, ZHANG C F, ZHANG H R, et al.. Boosting performance of perovskite solar cells with graphene quantum dots decorated SnO 2 electron transport layers[J]. Appl. Surf. Sci. , 2020, 507:145099.
0
浏览量
377
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构