1. 北京工业大学 激光工程研究院 北京,100124
2. 吉林大学 电子科学与工程学院, 集成光电子学国家重点联合实验室,吉林 长春,130012
3. 南方科技大学 生物医学工程系,广东 深圳,518055
扫 描 看 全 文
周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲激光产生[J]. 发光学报, 2020,41(4):435-441.
ZHOU Hua, YAO Chuan-fei, JIA Zhi-xu, et al. Mid-infrared Tunable High Pulse Energy Femtosecond Pulse Laser Generation[J]. Chinese Journal of Luminescence, 2020,41(4):435-441.
周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲激光产生[J]. 发光学报, 2020,41(4):435-441. DOI: 10.3788/fgxb20204104.0435.
ZHOU Hua, YAO Chuan-fei, JIA Zhi-xu, et al. Mid-infrared Tunable High Pulse Energy Femtosecond Pulse Laser Generation[J]. Chinese Journal of Luminescence, 2020,41(4):435-441. DOI: 10.3788/fgxb20204104.0435.
可调谐中红外飞秒光纤激光器具有非常普遍的应用,从而引起了人们的广泛关注。目前,非线性光纤中的拉曼孤子自频移效应是实现大范围可调谐飞秒脉冲激光的理想方法之一。然而,非线性光纤中其他高阶非线性效应的产生通常会限制拉曼孤子脉冲的能量提升。本文提出了利用有源掺杂光纤作为非线性介质和增益介质实现可调谐大能量中红外飞秒激光脉冲的方法。在理论上研究了有源掺杂非线性光纤中高阶孤子劈裂和孤子自频移效应的产生,以及线性增益对波长移动拉曼孤子能量、脉宽、光谱的影响。结果表明,通过为波长红移的低能量拉曼孤子提供线性增益,孤子脉冲的能量得到了显著提升且保持了其单脉冲特性,脉冲宽度为45 fs,且孤子脉冲的波长可通过所提供的增益进行大范围调谐。因此,利用有源掺杂光纤作为非线性介质是实现大能量可调谐中红外飞秒脉冲激光的一种有效方法。
Mid-infrared tunable femtosecond fiber laser has attracted many attentions for widely applications. Recently, Raman soliton self-frequency shifting effect in nonlinear fibers was regarded as a promising approach to obtain such pulse laser. However, other higher order nonlinear effects occurred in fibers will limit the pulse energy promoting. So, to further enhance the pulse energy of Raman soliton, we proposed a novel method where the rare-earth doped nonlinear fiber was used as nonlinear medium. We numerically investigated the impacts of the optical gain on the pulse energy, pulse width and spectrum of the wavelength shifting Raman soliton. The results show that as the Raman soliton shifted into the wavelength range where the optical gain introduced, the pulse energy of the soliton pulse was enlarged by several times, and the pulse width was compressed to 45 fs. Meanwhile, the wavelength of the femtosecond Raman soliton pulse can be widely tuned by changing the optical net gain. Therefore, by using rare-earth doped fiber as the nonlinear medium and gain medium, we can achieve the generation of mid-infrared tunable high pulse energy femtosecond pulse laser.
中红外飞秒脉冲可调谐孤子自频移效应线性增益
mid-infrared femtosecond pulsetunablesoliton self-frequency shifting effectsoptical gain
PIRES H,BAUDISCH M,SANCHEZ D,et al.. Ultrashort pulse generation in the mid-IR [J]. Prog. Quantum Electron.,2015,43:1-30.
SIGRIST M W. Mid-infrared laser-spectroscopic sensing of chemical species [J]. J. Adv. Res., 2015,6(3):529-533.
布玛丽亚阿布力米提,向梅. 飞秒时间分辨实验中泵浦-探测交叉相关函数的测量和时间零点的确定 [J]. 发光学报, 2017,38(5):648-654. BUMALIYAABULIMITI B,XIANG M. Determine the pump-probe cross correlation function and the zero of time of the pump and probe laser in femtosecond time-resolved studies [J]. Chin. J. Lumin., 2017,38(5):648-654. (in Chinese)
PANAGIOTOPOULOS P,WHALEN P,KOLESIK M,et al.. Super high power mid-infrared femtosecond light bullet [J]. Nat. Photonics, 2015,9(8):543-548.
CHAN M C,LIEN C H,LU J Y,et al.. High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy [J]. Opt. Express, 2014,22(8):9498-9507.
张扬,钱静,李鹏飞,等. 飞秒激光诱导的Mn2+掺杂锗酸盐玻璃上转换发光 [J]. 发光学报, 2015,36(7):738-743. ZHANG Y,QIAN J,LI P F,et al.. Upconversion luminescence of Mn2+ doped-germanate glass induced by femtosecond laser pulses [J]. Chin. J. Lumin., 2015,36(7):738-743. (in Chinese)
谭改娟,谢冀江,张来明,等. 中波红外激光技术最新进展 [J]. 中国光学, 2013,6(4):501-512. TAN G J,XIE J J,ZHANG L M,et al.. Recent progress in mid-infrared laser technology [J]. Chin. Opt., 2013,6(4):501-512. (in Chinese)
KUMAR S C,ESTEBAN-MARTIN A,IDEGUCHI T,et al.. Few-cycle,broadband,mid-infrared optical parametric oscillator pumped by a 20-fs Ti∶sapphire laser [J]. Laser Photonics Rev., 2014,8(5):L86-L91.
潘其坤. 中红外固体激光器研究进展 [J]. 中国光学, 2015,8(4):557-566. PAN Q K. Progress of mid-infrared solid-state laser [J]. Chin. Opt., 2015,8(4):557-566. (in Chinese).
ZHU X S,ZHU G W,WEI C,et al.. Pulsed fluoride fiber lasers at 3 m [Invited] [J]. J. Opt. Soc. Am. B, 2017,34(3):A15-A28.
ANASHKINA E A,ANDRIANOV A V,KOPTEV M Y,et al.. Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 m in GeO2-doped silica fibers with an Er:fiber laser source [J]. Opt. Express, 2012,20(24):27102-27107.
ANASHKINA E A,ANDRIANOV A V,KOPTEV M Y,et al.. Generating femtosecond optical pulses tunable from 2 to 3 m with a silica-based all-fiber laser system [J]. Opt. Lett., 2014,39(10):2963-2966.
高雪健,王善德,刘来,等. 基于碲酸盐微结构光纤的超连续光源 [J]. 发光学报, 2014,35(11):1376-1381. GAO X J,WANG S D,LIU L,et al.. Supercontinuum light source based on tellurite microstructure fibers [J]. Chin. J. Lumin., 2014,35(11):1376-1381. (in Chinese)
TANG Y X,WRIGHT L G,CHARAN K,et al.. Generation of intense 100 fs solitons tunable from 2 to 4.3 m in fluoride fiber [J]. Optica, 2016,3(9):948-951.
LI Z R,LI N,YAO C F,et al.. Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 m in an all-solid fluorotellurite fiber [J]. AIP Adv., 2018,8(11):115001-1-6.
DUVAL S,GAUTHIER J C,ROBICHAUD L R,et al.. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 m [J]. Opt. Lett., 2016,41(22):5294-5297.
LIU L,QIN G S,TIAN Q J,et al.. Numerical investigation of mid-infrared Raman soliton source generation in endless single mode fluoride fibers [J]. J. Appl. Phys., 2014,115(16):163102-1-4.
HAN J,WEI C,CHI H,et al.. Theoretical simulations of the soliton self-frequency shift of mid-infrared femtosecond pulses in step-index tellurite optical fibers:broadband tunability and high efficiency [J]. OSA Continuum, 2019,2(6):1851-1862.
HERRMANN J,GRIEBNER U,ZHAVORONKOV N,et al.. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers [J]. Phys. Rev. Lett., 2002,88(17):173901-1-4.
YAO C F,JIA Z X,LI Z R,et al.. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber [J]. Optica, 2018,5(10):1264-1270.
LI Y H,DU T J,XU B,et al.. Compact all-fiber 2.1-2.7 m tunable Raman soliton source based on germania-core fiber [J]. Opt. Express, 2019,27(20):28544-28550.
KONG D F,JIA D F,FENG D J,et al.. Numerical simulation and experimental studies on soliton self-frequency shift in single-mode optical fiber [C]. Proceedings of SPIE 10825,Quantum and Nonlinear Optics V,Beijing,China, 2018:1082511.
0
浏览量
36
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构