浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,100049
2. 中国科学院长春光学精密机械与物理研究所 Bimberg中德绿色光子学研究中心,吉林 长春,130033
3. 青岛科技大学 数理学院,山东 青岛,266062
4. 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春,130033
5. 柏林工业大学固体物理研究所 纳米光学中心, 德国 柏林 D,10623
纸质出版日期:2020-4-5,
网络出版日期:2020-3-2,
收稿日期:2020-2-10,
修回日期:2020-2-20,
扫 描 看 全 文
杨卓凯, 田思聪, LARISCH Gunter等. 基于PAM4调制的高速垂直腔面发射激光器研究进展[J]. 发光学报, 2020,41(4): 399-413
YANG Zhuo-kai, TIAN Si-cong, LARISCH Gunter etc. High-speed Vertical-cavity Surface-emitting Lasers Based on PAM4 Modulation[J]. Chinese Journal of Luminescence, 2020,41(4): 399-413
杨卓凯, 田思聪, LARISCH Gunter等. 基于PAM4调制的高速垂直腔面发射激光器研究进展[J]. 发光学报, 2020,41(4): 399-413 DOI: 10.3788/fgxb20204104.0399.
YANG Zhuo-kai, TIAN Si-cong, LARISCH Gunter etc. High-speed Vertical-cavity Surface-emitting Lasers Based on PAM4 Modulation[J]. Chinese Journal of Luminescence, 2020,41(4): 399-413 DOI: 10.3788/fgxb20204104.0399.
短距离光互联技术在云计算、5G通信、物联网技术等方面有重要的商业应用价值。基于高速垂直腔面发射激光器(Vertical-cavity surface-emitting laser,VCSEL)与多模光纤组成链路、采用直接调制检测、并使用如四电平脉冲幅度调制(Four-level pulse amplitude modulation,PAM4)等的高阶调制模式是现阶段短距离光互联链路方案的首选。本文首先介绍了短距离光互联应用的研究现状;第二部分介绍了VCSEL的发展、结构以及动态参数;第三部分介绍了PAM4调制方法及伴随使用的各种电子技术(均衡,前向纠错,脉冲整形);第四部分介绍了提高单链路速率的波分复用(Wavelength division multiplexing,WDM)技术;最后对以高速VCSEL、多模光纤、直接调制检测、PAM4调制以及波分复用技术的短距离光互联方案应用前景做了总结和展望。
The short-reach optical interconnection technology has important commercial application value in many fields
such as cloud computing
5G communication and internet of things technology. The system based on high-speed vertical-cavity surface-emitting lasers (VCSELs) and multi-mode fiber
using direct modulation detection and high-order intensity modulation mode such as four-level pulse amplitude modulation (PAM4) is proved to be an ideal solution for short-reach optical interconnection. In this article
firstly
the research of short-reach optical interconnection is introduced; secondly
the development
structure and dynamic parameters of VCSELs are studied; thirdly
PAM4 modulation method and various electronic technologies (equalization
forward error correction and pulse shaping) are reviewed; fourthly
the wavelength division multiplexing (WDM) technology which can increase the rate of single link is mentioned; lastly
summary and outlook of the short-reach optical interconnection technology based on high-speed VCSEL
multimode fiber
direct modulation detection
PAM4 modulation and WDM are introduced.
垂直腔面发射激光器高速调制四电平脉冲幅度调制(PAM4)波分复用
vertical-cavity surface-emitting lasers(VCSEL)high-speed modulationfour-level pulse amplitude modulation(PAM4)wavelength division multiplexing(WDM)
Cisco. Cisco Annual Internet Report [R]. White Paper, 2020.
TATUM J A,GAZULA D,GRAHAM L A,et al.. VCSEL-based interconnects for current and future data centers [J]. J. Lightwave Technol., 2015,33(4):727-732.
MAHGEREFTEH D,THOMPSON C,COLE C,et al.. Techno-economic comparison of silicon photonics and multimode VCSELs [J]. J. Lightwave Technol., 2016,34(2):233-242.
LAVRENCIK J,VARUGHESE S,GUSTAVSSON J S,et al.. Error-free 100 Gbps PAM-4 transmission over 100 m wideband fiber using 850 nm VCSELs [C]. Proceedings of 2017 European Conference on Optical Communication,Gothenburg,Sweden, 2017:1-3.
ZUO T J,ZHANG L,ZHOU J,et al.. Single lane 150-Gb/s,100-Gb/s and 70-Gb/s 4-PAM transmission over 100-m,300-m and 500-m MMF using 25-G class 850 nm VCSEL [C]. Proceedings of 42nd European Conference on Optical Communication,Dusseldorf,Germany, 2016:1-3.
WU B,ZHOU X,MA Y Y,et al.. Single-lane 112Gbps transmission over 300 m OM4 multimode fiber based on a single-transverse-mode 850 nm VCSEL [C]. Proceedings of 42nd European Conference on Optical Communication,Dusseldorf,Germany, 2016:1-3.
KOTTKE C,CASPAR C,JUNGNICKEL V,et al.. High speed 160 Gb/s DMT VCSEL transmission using pre-equalization [C]. Proceedings of 2017 Optical Fiber Communications Conference and Exhibition,Los Angeles,CA,USA, 2017:1-3.
ORENSTEIN M,VON LEHMEN A C,CHANG-HASNAIN,C,et al.. Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition [J]. Appl. Phys. Lett., 1990,56(24):2384-2386.
TELL B,LEE Y H,BROWN-GOEBELER K F,et al.. High-power CW vertical-cavity top surface-emitting GaAs quantum well lasers [J]. Appl. Phys. Lett., 1990,57(18):1855-1857.
SZWEDA R. VCSELs resurgent [J]. Ⅲ Vs Rev., 2004,17(8):28-31.
JOHNSON R H,KUCHTA D M. 30 Gb/s directly modulated 850 nm datacom VCSELs [C]. Proceedings of Conference on Lasers and Electro-Optics,San Jose,California,United States, 2008.
WESTBERGH P,GUSTAVSSON J S,HAGLUND ,et al.. 32 Gbit/s multimode fibre transmission using high-speed,low current density 850 nm VCSEL [J]. Electron. Lett., 2009,45(7):366-368.
BLOKHIN S A,LOTT J A,MUTIG A,et al.. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s [J]. Electron. Lett., 2009,45(10):501-503.
WESTBERGH P,SAFAISINI R,HAGLUND E,et al.. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s [J]. Electron. Lett., 2012,48(18):1145-1147.
WESTBERGH P,HAGLUND E P,HAGLUND E,et al.. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s[J]. Electron. Lett., 2013,49(16):1021-1023.
KUCHTA D M,RYLYAKOV A V,DOANY F E,et al.. A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link [J]. IEEE Photonics Technol. Lett., 2015,27(6):577-580.
HAGLUND E,WESTBERGH P,GUSTAVSSON J S,et al.. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25~50 Gbit/s [J]. Electron. Lett., 2015,51(14):1096-1098.
FENG M,WU C H,HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects [J]. IEEE J. Quantum Electron., 2018,54(3):2400115.
TATUM J A,LANDRY G D,GAZULA D,et al.. VCSEL-based optical transceivers for future data center applications [C]. Proceedings of 2018 Optical Fiber Communications Conference and Exposition,San Diego,CA,USA, 2018:1-3.
CHI K L,XIE Z T,AGUSTIN M,et al.. Zn-diffusion/oxide-relief 940 nm VCSELs with excellent high-temperature performance for 50 Gbit/sec transmission [C]. Proceedings of 2018 Optical Fiber Communications Conference and Exposition,San Diego,CA,USA, 2018:1-3.
HAGHIGHI N,LARISCH G,ROSALES R,et al.. 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs [C]. Proceedings of 2018 IEEE International Semiconductor Laser Conference,Santa Fe,NM,USA, 2018:1-2.
SIMPANEN E,GUSTAVSSON J S,HAGLUND E,et al.. 1 060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate [J]. Electron. Lett., 2017,53(13):869-871.
ZHONG K P,CHEN W,SUI Q,et al.. Experimental demonstration of 500 Gbit/s short reach transmission employing PAM4 signal and direct detection with 25 Gbps device [C]. Proceedings of 2015 Optical Fiber Communications Conference and Exhibition,Los Angeles,CA, 2015:1-3.
MOTAGHIANNEZAM S M R,LYUBOMIRSKY I,DAGHIGHIAN H,et al.. 180 Gbps PAM4 VCSEL transmission over 300 m wideband OM4 fibre [C]. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition,Anaheim,CA, 2016:1-3.
LI H,WOLF P,MOSER P,et al.. Vertical-cavity surface-emitting lasers for optical interconnects [J]. SPIE Newsroom, 2014,doi:10.1117/2.1201411.005689.
COLDREN L A,CORZINE S W,MAANOVIC' M L. Diode Lasers and Photonic Integrated Circuits [M]. 2nd ed. Hoboken:Wiley, 2012.
WESTBERGH P. High Speed Vertical Cavity Surface Emitting Lasers for Short Reach Communication [D]. Gteborg,Sweden:Chalmers University of Technology, 2011.
SATUBY Y,ORENSTEIN M. Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers [J]. IEEE J. Quantum Electron., 1999,35(6):944-954.
ZEIL G,EBERS S,KROPP J R,et al.. Noise performance of multimode VCSELs [J]. J. Lightwave Technol., 2001,19(6):884-892.
LIU A J,WOLF P,LOTT J A,et al.. Vertical-cavity surface-emitting lasers for data communication and sensing [J]. Photonics Res., 2019,7(2):121-136.
CHANG Y C. Engineering Vertical-cavity Surface-emitting Lasers for High-speed Operation [D]. Santa Barbara:University of California, 2008.
TAUBER D,WANG G,GEELS R S,et al.. Large and small signal dynamics of vertical cavity surface emitting lasers [J]. Appl. Phys. Lett., 1993,62(4):325-327.
LARSSON A. Advances in VCSELs for communication and sensing [J]. IEEE J. Sel. Top. Quantum Electron., 2011,17(6):1552-1567.
SUEMUNE I. Theoretical study of differential gain in strained quantum well structures [J]. IEEE J. Quantum Electron.,1991,27(5):1149-1159.
WESTBERGH P,GUSTAVSSON J S,HAGLUND ,et al.. High-speed,low-current-density 850 nm VCSELs [J]. IEEE J. Sel. Top. Quantum Electron., 2009,15(3):694-703.
HEALY S B,O'REILLY E P,GUSTAVSSON J S,et al.. Active region design for high-speed 850 nm VCSELs [J]. IEEE J. Quantum Electron., 2010,46(4):506-512.
HOFMANN W,MOSER P,WOLF P,et al.. 44 Gb/s VCSEL for optical interconnects [C]. Proceedings of 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference,Los Angeles,CA,USA, 2011:1-3.
MOSER P,WOLF P,MUTIG A,et al.. 85 ℃ error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers [J]. Appl. Phys. Lett., 2012,100(8):081103-1-3.
THEN H W,WU C H,FENG M,et al.. Microwave characterization of Purcell enhancement in a microcavity laser [J]. Appl. Phys. Lett., 2010,96(13):131107-1-3.
WESTBERGH P,GUSTAVSSON J S,KGEL B,et al.. Impact of photon lifetime on high-speed VCSEL performance [J]. IEEE J. Sel. Top. Quantum Electron., 2011,17(6):1603-1613.
LARISCH G,MOSER P,LOTT J A,et al.. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs [J]. IEEE Photonics. Technol. Lett., 2016,28(21):2327-2330.
ZHOU P,CHENG J,SCHAUS C F,et al.. Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD [J]. IEEE Photonics Technol. Lett., 1991,3(7):591-593.
AFROMOWITZ M A. Thermal conductivity of Ga1-xAl</i>xAs alloys [J]. J. Appl. Phys., 1973,44(3):1292-1294.
LASCOLA K M,YUEN W,CHANG-HASNAIN C J. Structural dependence of the thermal resistance of vertical cavity surface emitting lasers [C]. Proceedings of 1997 Digest of The IEEE/LEOS Summer Topical Meeting:Vertical-cavity Lasers/Technologies for A Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application,Montreal,Que.,Canada, 1997:79-80.
AL-OMARI A N,ALIAS M S,ABABNEH A,et al.. Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks [J]. J. Phys. D:Appl. Phys., 2012,45(50):505101-1-8.
SCHUBERT E F,TU L W,ZYDZIK G J,et al.. Elimination of heterojunction band discontinuities by modulation doping [J]. Appl. Phys. Lett., 1992,60(4):466-468.
AL-OMARI N,LEAR K L. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0 GHz bandwidth [J]. IEEE Photonics Technol. Lett., 2004,16(4):969-971.
何晓颖,董建,胡帅,等. 采用BCB平整技术的高速850 nm垂直面发射激光器 [J]. 中国光学, 2018,11(2):190-197. HE X Y,DONG J,HU S,et al.. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique [J]. Chin. Opt., 2018,11(2):190-197. (in English)
CHANG Y C,WANG C S,COLDREN L A. High-efficiency,high-speed VCSELs with 35 Gbit/s error-free operation [J]. Electron. Lett., 2007,43(19):1022-1023.
AZUCHI M,JIKUTANI N,ARAI M,et al.. Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth [C]. Proceedings of The 5th Pacific Rim Conference on Lasers and Electro-Optics,Taipei,China, 2003.
CHANG Y C,WANG C S,JOHANSSON L A,et al.. High-efficiency,high-speed VCSELs with deep oxidation layers [J]. Electron. Lett., 2006,42(22):1281-1282.
WESTBERGH P,SAFAISINI R,HAGLUND E,et al.. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication [C]. Proceedings of Vertical-Cavity Surface-Emitting Lasers XVII,San Francisco,California,United States, 2013:86390X-1-6.
周广正,兰天,李颖,等. 高温稳定25 Gbit/s 850 nm垂直腔面发射激光器 [J]. 发光学报, 2019,40(5):630-634. ZHOU G Z,LAN T,LI Y,et al.. High temperature-stable 25 Gbit/s 850 nm vertical-cavity surface-emitting lasers [J]. Chin. J. Lumin., 2019,40(5):630-634. (in Chinese)
李惠,贾晓卫,魏泽坤,等. 高速光通讯面发射激光器的热分析及优化 [J]. 发光学报, 2017,38(11):1516-1522. LI H,JIA X W,WEI Z K,et al.. Thermal analysis and structure optimization of high-speed optical communication-VCSEL [J]. Chin. J. Lumin., 2017,38(11):1516-1522. (in Chinese)
LARSSON A,GUSTAVSSON J S,HAGLUND E,et al.. VCSEL modulation speed:status and prospects [C]. Proceedings of Vertical-cavity Surface-emitting Lasers XXIII,San Francisco,California,United States, 2019.
BROWN M,DUDEK M,HEALEY A,et al.. The state of IEEE 802.3bj 100 Gb/s backplane ethernet [C]. DesignCon,Santa Clara,California,United States, 2014.
IEEE P802.3bj 100 Gb/s backplane and copper cable task force materials [EB/OL]. (2014-07-19) [2019-12-03].http://www.ieee802.org/3/bj.
SZCZERBA K,WESTBERGH P,KARLSSON M,et al.. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL [J]. J. Lightwave Technol., 2015,33(7):1395-1401.
SZCZERBA K,LENGYEL T,KARLSSON M,et al.. 94 Gb/s 4-PAM using an 850 nm VCSEL,pre-emphasis,and receiver equalization [J]. IEEE Photonics Technol. Lett., 2016,28(22):2519-2521.
张颖. 高速光通信系统中的概率成形编码调制技术的研究 [D]. 北京:北京邮电大学, 2019. ZHANG Y. Research on Probabilistic Shaping Coded Modulation Technology in High-speed Optical Communication System [D]. Beijing:Beijing University of Posts and Telecommunications, 2019. (in Chinese)
CASTRO J M,PIMPINELLA R,KOSE B,et al.. 48.7 Gb/s 4-PAM transmission over 200 m of high bandwidth MMF using an 850 nm VCSEL [J]. IEEE Photonics Technol. Lett., 2015,27(17):1799-1801.
CASTRO J M,PIMPINELLA R,KOSE B,et al.. Investigation of 60 Gb/s 4-PAM using an 850 nm VCSEL and multimode fiber [J]. J. Lightwave Technol., 2016,34(16):3825-3836.
GENTILE K. 数字脉冲整形滤波器基础知识 [EB/OL]. (2014-07-14)[2020-01-06]. https://wenku.baidu.com/view/163f2548c5da50e2524d7fba.html. GENTILE K. Basic knowledge of digital pulse shaping filter [EB/OL]. (2014-07-14)[2020-01-06]. https://wenku.baidu.com/view/163f2548c5da50e2524d7fba.html. (in Chinese)
SZCZERBA K,WESTBERGH P,GUSTAVSSON J,et al.. 30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL [C]. Proceedings of 2011 37th European Conference and Exhibition on Optical Communication,Geneva, 2011:1-3.
SZCZERBA K,WESTBERGH P,KARLSSON M,et al.. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL [J]. Electron. Lett., 2013,49(15):953-955.
LAVRENCIK J,VARUGHESE S,THOMAS V A,et al.. Scaling VCSEL-MMF links to 1 Tb/s using short wavelength division multiplexing [J]. J. Lightwave Technol., 2018,36(18):4138-4145.
LAVRENCIK J,SIMPANEN E,VARUGHESE S,et al.. Error-free 100 Gbps PAM-4 transmission over 100 m OM5 MMF using 1 060 nm VCSELs [C]. Proceedings of 2019 Optical Fiber Communications Conference and Exhibition,San Diego,CA,USA, 2019:1-3.
宗磊. DWDM柔性测试技术的研究与应用 [D]. 上海:复旦大学, 2009. ZONG L. Research and Application of DWDM Flexible Testing Technology [D]. Shanghai:Fudan University, 2009. (in Chinese)
MOTAGHIANNEZAM S M R,KOCOT C. 104 Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880 nm VCSELs [C]. Proceedings of 2016 Conference on Lasers and Electro-Optics,San Jose,CA, 2016:1-2.
0
浏览量
169
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构