浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,100049
2. 中国科学院 上海技术物理研究所 上海,200048
3. 上海空间电源研究所 上海,200245
纸质出版日期:2020-04-05,
网络出版日期:2020-03-02,
收稿日期:2020-02-01,
修回日期:2020-02-20,
移动端阅览
陆宏波, 李戈, 李欣益, 等. 晶格小失配InGaAsP材料特性及太阳电池应用[J]. 发光学报, 2020,41(4):351-356.
LU HONG-BO, LI GE, LI XIN-YI, et al. Small Lattice-mismatched InGaAsP: Material Characterization and Application in Solar Cells. [J]. Chinese journal of luminescence, 2020, 41(4): 351-356.
陆宏波, 李戈, 李欣益, 等. 晶格小失配InGaAsP材料特性及太阳电池应用[J]. 发光学报, 2020,41(4):351-356. DOI: 10.3788/fgxb20204104.0351.
LU HONG-BO, LI GE, LI XIN-YI, et al. Small Lattice-mismatched InGaAsP: Material Characterization and Application in Solar Cells. [J]. Chinese journal of luminescence, 2020, 41(4): 351-356. DOI: 10.3788/fgxb20204104.0351.
Ⅲ-Ⅴ族太阳电池效率的持续提升要求对能量转换材料的带隙宽度进行更细致划分,以实现对全光谱的高效利用。在短波红外波段,四元InGaAsP混晶材料因在带隙宽度和晶格常数的调节上具有很好的可操作性,是一种极具潜力的短波红外光电转换材料。本文对InGaAsP材料生长及子电池器件制备进行了研究,通过时间分辨荧光光谱、高分辨X射线衍射等表征手段对室温下晶格失配的InGaAsP材料进行了测试分析。实验结果表明,在一定程度负失配生长条件下,InGaAsP材料质量随着负失配程度逐渐提高。在后续电池制备过程中,一定程度负失配同样有助于电池器件性能提升,制备的单结电池开路电压由晶格匹配时的633 mV提高到负失配条件下的684 mV,从而为高效多结太阳电池的应用提供了新的技术路线。
The continuous improvement in efficiency of Ⅲ-Ⅴ solar cells requires further detailed subdivision of the bandgap of energy conversion materials
to realize more efficient utilizing of the full solar spectrum. In the short wave infrared spectrum
InGaAsP quaternary hybrid material is a potential photoelectric conversion material due to its tunableness in bandgap and lattice constant. In this paper
the growth of InGaAsP materials and the fabrication of sub-cell devices were studied. The characteristics of lattice-mismatched InGaAsP materials were tested and analyzed by HRXRD
TRPL and other characterization methods at room temperature. Under negative mismatch growth condition
the quality of InGaAsP material increases gradually with the negative mismatch degree. Applied to sub-cell fabrication
a certain degree of negative mismatch is conducive to the improvement of device performance. The open-circuit voltage of the fabricated single-junction solar cell increases from 633 mV at lattice-matching to 684 mV at negative lattice-mismatch
thus providing a novel method to improve the efficiency of Ⅲ-Ⅴ multijunction solar cell.
晶格失配InGaAsPMOCVD太阳电池
lattice-mismatchInGaAsPMOCVDsolar cell
GREENM A,HISHIKAWA Y,DUNLOP E D,et al.. Solar cell efficiency tables (version 51) [J]. Prog. Photovolt., 2018,26(1):3-12.
CORNFELD A B,AIKEN D,CHO B,et al.. Development of a four sub-cell inverted metamorphic multi-junction(IMM) highly efficient AM0 solar cell [C]. Proceedings of The 35th IEEE Photovoltaic Specialists Conference,Honolulu, 2010:105-109.
CHIU P T,LAW D C,WOO R L,et al.. 35.8% space and 38.8% terrestrial 5J direct bonded cells [C]. Proceedings of The IEEE 40th Photovoltaic Specialist Conference,Denver, 2014:11-13.
CHIU P T,LAW D C,SINGER S B,et al.. High performance 5J and 6J direct bonded (SBT) space solar cells [C]. Proceedings of The 2015 IEEE 42nd Photovoltaic Specialist Conference,New Orleans, 2015:1-3.
李再金,芦鹏,李特,等. 1.06 m InGaAs/InGaAsP量子阱半导体激光器的温度特性 [J]. 发光学报, 2012,33(6):647-650. LI Z J,LU P,LI T,et al.. Temperature characteristic of 1.06 m InGaAs/InGaAsP quantum well laser diode [J]. Chin. J. Lumin., 2012,33(6):647-650. (in Chinese)
徐华伟,宁永强,曾玉刚,等. 852 nm半导体激光器InGaAlAs、InGaAsP、InGaAs和GaAs量子阱的温度稳定性 [J]. 发光学报, 2012,33(6):640-646. XU H W,NING Y Q,ZENG Y G,et al.. Temperature stability of InGaAlAs,InGaAsP,InGaAs and GaAs quantum-wells for 852 nm laser diode [J]. Chin. J. Lumin., 2012,33(6):640-646. (in Chinese)
KING R R,BHUSARI D,BOCA A,et al.. Band gap-voltage offset and energy production in next-generation multijunction solar cells [J]. Prog. Photovolt., 2011,19(7):797-812.
GARCIA I,FRANCE R M,GEISZ J F,et al.. Thin,high quality GaInP compositionally graded buffer layers grown at high growth rates for metamorphic Ⅲ-Ⅴ solar cell applications [J]. J. Cryst. Growth, 2014,393:64-69.
OSHIMA R,MAKITA K,TAYAGAKI T,et al.. Enhanced open circuit voltage in inverted thin film solar cells lattice-matched to InP [C]. Proceedings of The 2016 IEEE 43rd Photovoltaic Specialists Conference,Portland, 2016:2354-2357.
JI L,TAN M,HONDA K,et al.. Investigation of InGaAsP solar cells grown by solid-state molecular beam epitaxy [J]. Solar Energy Mater. Solar Cells, 2015,137:68-72.
JI L,LU S L,WU Y Y,et al.. Carrier recombination dynamics of MBE grown InGaAsP layers with 1 eV bandgap for quadruple-junction solar cells [J]. Solar Energy Mater. Solar Cells, 2014,127:1-5.
SCHIMPER H J,KOLLONITSCH Z,MLLER K,et al.. Material studies regarding InP-based high-efficiency solar cells [J]. J. Cryst. Growth, 2006,287(2):642-646.
KING R R,ERMER J H,JOSLIN D E,et al.. Double heterostructures for characterization of bulk lifetime and interface recombination velocity in Ⅲ-V multijunction solar cells [C]. Proceedings of The 2nd World Conference on Photovoltaic Solar Energy Conversion,Vienna, 1998:86-90.
BISARO R,MERENDA P,PEARSALL T P. The thermal-expansion parameters of some GaxIn1-xAsyP1-y alloys [J]. Appl. Phys. Lett., 1979,34(1):100-102.
LI X Y,ZHANG J Q,ZHANG W,et al.. Zinc-induced lattice contraction in metalorganic vapor phase epitaxy grown AlGaInP [J]. Thin Solid Films, 2015(592):24-28.
0
浏览量
408
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构