浏览全部资源
扫码关注微信
中国石油大学(华东) 理学院,山东 青岛,266580
[ "唐久超(1992-),男,陕西汉中人,硕士研究生,2017年于伊犁师范大学获得学士学位,主要从事理论物理方面的研究。E-mail:tangjiuchao55@126.com" ]
纸质出版日期:2020-3-5,
网络出版日期:2019-12-9,
收稿日期:2019-10-22,
修回日期:2019-11-16,
扫 描 看 全 文
唐久超,. 四硫富瓦烯类染料敏化剂分子内电子转移特性[J]. 发光学报, 2020,41(3): 288-295
TANG Jiu-chao,. Intramolecular Electron Transfer Characteristic of Tetrathiafulvalene-based Metal-free Dye Sensitizers[J]. Chinese Journal of Luminescence, 2020,41(3): 288-295
唐久超,. 四硫富瓦烯类染料敏化剂分子内电子转移特性[J]. 发光学报, 2020,41(3): 288-295 DOI: 10.3788/fgxb20204103.0288.
TANG Jiu-chao,. Intramolecular Electron Transfer Characteristic of Tetrathiafulvalene-based Metal-free Dye Sensitizers[J]. Chinese Journal of Luminescence, 2020,41(3): 288-295 DOI: 10.3788/fgxb20204103.0288.
染料敏化剂是染料敏化太阳能电池中关键的光电转换材料,其受光激发后,电子由低能级基态跃迁到高能级激发态从而产生有效的电势差。设计和筛选优异性能的染料敏化剂有利于提升其光电转化效率。本文以相关实验研究为背景,设计了一系列具有不同桥位基团的四硫富瓦烯(TTF)类纯有机染料敏化剂,利用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对其光电转化及分子内电子转移特性进行了系统研究,通过比较筛选出了高性能的四硫富瓦烯类染料敏化剂。研究结果表明,以环戊联噻吩及其衍生物作为桥位基团的四硫富瓦类染料敏化剂的整体性能更佳,主要表现在较好的电荷分离态、拓宽的光谱吸收范围、提升的光捕获效率以及增强的分子内电子转移(IET)性能等。
Dye sensitizers are the key photoelectric conversion materials in dye-sensitized solar cells (DSSCs). The electrons in sensitizers transfer from the low level of ground state to the high level of excited state and generate effective potential difference when sensitizers are excited by light. Designing and screening sensitizer with excellent properties is beneficial to promote their photoelectric conversion efficiency. A series of tetrathiafulvalene (TTF)-based metal-free dye sensitizers with different -bridge were designed based on the relevant experimental study
and their photoelectric conversion and the intramolecular electron transfer characteristics were systematically investigated by using density functional theory (DFT) and time-dependent DFT. Results show that the overall performance of TTF-based metal-free dye sensitizer with cyclopentathiophene and its derivatives as -bridge was significantly improved in terms of the better charge separation state
broadened spectral absorption coverage rage
improved light-harvesting efficiency and enhanced intramolecular electron transfer performance.
四硫富瓦烯类染料敏化剂密度泛函理论光电转换分子内电子转移
tetrathiafulvalene-based metal-free dye sensitizersdensity functional theoryphotoelectric conversionintramolecular electron transfer
GRTZEL M. Photoelectrochemical cells[J]. Nature, 2001,414(6861):338-344.
O'REGAN B,GRTZEL M. A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353(6346):737-740.
HAGFELDT A,BOSCHLOO G,SUN L C,et al.. Dye-sensitized solar cells[J]. Chem. Rev., 2010,110(11):6595-6663.
YELLA A,MAI C L,ZAKEERUDDIN S M,et al.. Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells:the role of benzene spacers[J]. Angew. Chem., 2014,53(11):2973-2977.
ZHANG L,YANG X C,WANG W H,et al.. 13.6% efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state[J]. ACS Energy Lett., 2019,4(4):943-951.
KURUMISAWA Y,HIGASHINO T,NIMURA S,et al.. Renaissance of fused porphyrins:substituted methylene-bridged thiophene-fused strategy for high-performance dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2019,141(25):9910-9919.
BUENE A F,OSE E E,ZAKARIASSEN A G,et al.. Auxiliary donors for phenothiazine sensitizers for dye-sensitized solar cells-how important are they really?[J]. J. Mater. Chem. A, 2019,7(13):7581-7590.
GRTZEL M. Solar energy conversion by dye-sensitized photovoltaic cells[J]. Inorg. Chem., 2005,44(20):6841-6851.
NI J S,YEN Y C,LIN J T,et al.. Organic sensitizers with a rigid dithienobenzotriazole-based spacer for high performance dye-sensitized solar cells[J]. J. Mater. Chem. A, 2016,4(17):6553-6560.
EOM Y K,KANG S H,CHOI I T,et al.. Significant light absorption enhancement by a single heterocyclic unit change in the -bridge moiety from thieno[3,2-b] benzothiophene to thieno[3,2-b] indole for high performance dye-sensitized and tandem solar cells[J]. J. Mater. Chem. A, 2017,5(5):2297-2308.
JIANG H Y,WU Y Z,ISLAM A,et al.. Molecular engineering of quinoxaline-based D-A--A organic sensitizers:taking the merits of a large and rigid auxiliary acceptor[J]. ACS Appl. Mater. Interfaces, 2018,10(16):13635-13644.
MANFREDI N,TRIFILETTI V,MELCHIORRE F,et al.. Performance enhancement of a dye-sensitized solar cell by peripheral aromatic and heteroaromatic functionalization in di-branched organic sensitizers[J]. New J. Chem., 2018,42(11):9281-9290.
LI H Y,FANG M M,TANG R L,et al.. The introduction of conjugated isolation groups into the common acceptor cyanoacrylic acid:an efficient strategy to suppress the charge recombination in dye sensitized solar cells and the dramatically improved efficiency from 5.89% to 9.44%[J]. J. Mater. Chem. A, 2016,4(42):16403-16409.
ZENG W D,CAO Y M,BAI Y,et al.. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks[J]. Chem. Mater., 2010,22(5):1915-1925.
EZHUMALAI Y,LEE B,FAN M S,et al.. Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells[J]. J. Mater. Chem. A, 2017,5(24):12310-12321.
DUVVA N,CHILAKAMARTHI U,GIRIBABU L. Recent developments in tetrathiafulvalene and dithiafulvalene based metal-free organic sensitizers for dye-sensitized solar cells:a mini-review[J]. Sustain. Energy Fuels, 2017,1(4):678-688.
GENG Y,POP F,YI C Y,et al.. Electronic tuning effects via -linkers in tetrathiafulvalene-based dyes[J]. New J. Chem., 2014,38(7):3269-3274.
AMACHER A,YI C Y,YANG J B,et al.. A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cells[J]. Chem. Commun., 2014,50(49):6540-6542.
GIRIBABU L,DUVVA N,SINGH S P,et al.. Stable and charge recombination minimized -extended thioalkyl substituted tetrathiafulvalene dye-sensitized solar cells[J]. Mater. Chem. Front., 2017,1(3):460-467.
GIRIBABU L,DUVVA N,PRASANTHKUMAR S,et al.. Effect of spacers and anchoring groups of extended -conjugated tetrathiafulvalene based sensitizers on the performance of dye sensitized solar cells[J]. Sustain. Energy Fuels, 2017,1(2):345-353.
SUN M J,CAO Z X. DFT and TD-DFT studies on osmacycle dyes with tunable photoelectronic properties for solar cells[J]. Theor. Chem. Acc., 2014,133(8):1531.
ANDERSSON M P,UVDAL P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple- basis set 6-311+G(d,p)[J]. J. Phys. Chem. A, 2005,109(12):2937-2941.
DEL BENE J E,PERSON W B,SZCZEPANIAK K. Properties of hydrogen-bonded complexes obtained from the B3LYP Functional with 6-31G(d,p) and 6-31+G(d,p) basis sets:comparison with MP2/6-31+G(d,p) results and experimental data[J]. J. Phys. Chem., 1995,99(27):10705-10707.
COSSI M,BARONE V. Time-dependent density functional theory for molecules in liquid solutions[J]. J. Chem. Phys., 2001,115(10):4708-4717.
BARONE V,COSSI M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J. Phys. Chem. A, 1998,102(11):1995-2001.
FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.. Gaussian 09,Revision D.01[CP]. New York:Gaussion Inc.,Wallingford CT, 2009.
LU T,CHEN F W. Multiwfn:a multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2012,33(5):580-592.
SANTHANAMOORTHI N,LO C M,JIANG J C. Molecular design of porphyrins for dye-sensitized solar cells:a DFT/TDDFT study[J]. J. Phys. Chem. Lett., 2013,4(3):524-530.
NALWA H S. Handbook of Advanced Electronic and Photonic Materials and Devices:Conducting Polymers[M]. San Diego:Academic Press, 2001.
ZHANG J Z,ZHANG J,LI H B,et al.. Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells:a theoretical investigation[J]. J. Power Sources, 2014,267:300-308.
ZHANG J,ZHANG J Z,LI H B,et al.. Rational modifications on champion porphyrin dye SM315 using different electron-withdrawing moieties toward high performance dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2014,16(45):24994-25003.
MA W,JIAO Y,MENG S. Predicting energy conversion efficiency of dye solar cells from first principles[J]. J. Phys. Chem. C, 2014,118(30):16447-16457.
MARCUS R A,SUTIN N. Electron transfers in chemistry and biology[J]. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg., 1985,811(3):265-322.
0
浏览量
101
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构