1. 华侨大学信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
扫 描 看 全 文
骆昕, 金玉, 李志祥等. 小分子叠层有机太阳能电池的界面层优化[J]. 发光学报, 2020,41(2): 175-180
LUO Xin, JIN Yu, LI Zhi-xiang etc. Optimization of Interface Layers in Small Molecule Organic Tandem Solar Cells[J]. Chinese Journal of Luminescence, 2020,41(2): 175-180
骆昕, 金玉, 李志祥等. 小分子叠层有机太阳能电池的界面层优化[J]. 发光学报, 2020,41(2): 175-180 DOI: 10.3788/fgxb20204102.0175.
LUO Xin, JIN Yu, LI Zhi-xiang etc. Optimization of Interface Layers in Small Molecule Organic Tandem Solar Cells[J]. Chinese Journal of Luminescence, 2020,41(2): 175-180 DOI: 10.3788/fgxb20204102.0175.
为了提高双结叠层有机太阳能电池(OSCs)的性能,我们对有机小分子叠层OSCs的中间层(IL)、阴极界面层(CL)和活性层进行了优化。首先,研究不同低功函数的金属纳米粒子(Mg、Ag、Al和Ca)作为IL对叠层OSCs性能的影响,得到了最优的IL材料为0.1 nm厚的金属Al,使得叠层OSCs的PCE提升了50.9%。其次,研究了不同低功函数金属(Mg、Al和Ca)作为CL对叠层OSCs性能的影响,并得到了最优的CL金属材料为Mg,与Al作为CL的叠层OSCs对比,采用Mg作为CL的器件PCE提升了20.7%。最后采用窄带隙材料DTDCTB取代中带隙材料boron subphthalocyanine chloride(SubPc)作为后子电池的活性层,与仅采用SubPc的叠层OSCs相比,PCE提升了30.2%。当前后子电池均采用体异质结结构后,最终叠层OSCs的PCE达到了4.04%,与最初未优化前OSCs的PCE(2.1%)相比,最优OSCs的PCE提升了92.4%。
The performance of double-junction tandem organic solar cells (OSCs) was improved by optimizing interlayer (IL), cathode interface layer (CL) and active layer. Firstly, by employing low work function metal nanoparticles (Mg, Ag, Al and Ca) as IL, the optimal performance was obtained in OSC with IL of 0.1 nm Al. Comparing to tandem OSCs without IL, the power conversion efficiency (PCE) of OSCs with Al IL was increased by 50.9%. Secondly, by employing different low work function metals (Mg, Al and Ca) as CL in tandem OSCs, the optimal performance was obtained in OSC with Mg CL. Compared with tandem OSCs with Al CL, PCE of OSCs with Mg CL was increased by 20.7%. Finally, narrow bandgap material DTDCTB was adopted to replace medium bandgap material boron subphthalocyanine chloride (SubPc) as active layer of the back sub-cell. Compared with tandem OSCs using only SubPc donor material, the PCE was increased by 30.2%. By using bulk heterojunctionstructure in both front and back sub-cells, PCE of tandem OSCs reached 4.04%. Compared with PCE (2.1%) of original non-optimized OSCs, the PCE of optimal OSCs was increased by 92.4%.
叠层有机太阳能电池中间层阴极界面层体异质结
tandem organic solar cellintermediate layercathode interface layerbulk heterojunction
HUO L J,LIU T,SUN X B,et al.. Single-junction organic solar cells based on a novel wide-band gap polymer with efficiency of 9.7%[J]. Adv. Mater., 2015,27(18):2938-2944.
WANG Y M,WEI W,LIU X,et al.. Research progress on polymer heterojunction solar cells[J]. Sol. Energy Mater. Sol. Cells, 2012,98:129-145.
ZHANG F J,XU X W,TANG W H,et al.. Recent development of the inverted configuration organic solar cells[J]. Sol. Energy Mater. Sol. Cells, 2011,95(7):1785-1799.
DOU L T,YOU J B,YANG J,et al.. Tandem polymer solar cellsfeaturing a spectrally matched low-bandgap polymer[J]. Nat. Photon., 2012,6(3):180-185.
张利忠,吴明晓,田金鹏,等. TiO2阴极缓冲层对Rubrene/C70有机太阳能电池性能的改善[J]. 发光学报, 2017,38(3):359-364. ZHANG L Z,WU M X,TIAN J P,et al.. Improvement of TiO2 cathode buffer layer to the performance of rubrene/C70 organic solar cells[J]. Chin. J. Lumin., 2017,38(3):359-364. (in Chinese)
SUN Y M,WELCH G C,LEONG W L,et al.. Solution-processed small-molecule solar cells with 6.7% efficiency[J]. Nat. Mater., 2012,11(1):44-48.
YOU J B,DOU L T,YOSHIMURA K,et al.. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commun., 2013,4:1446-1-10.
QIN Y P,CHEN Y,CUI Y,et al.. Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells[J]. Adv. Mater., 2017,29(24):1606340-1-7.
HE Z C,ZHONG C M,SU S J,et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012,6(9):591-595.
金玉,王康,邹道华,等. 表面等离子体-微腔激元对顶入射有机薄膜太阳能电池光吸收效率的增强[J]. 发光学报, 2017,38(11):1532-1538. JIN Y,WANG K,ZOU D H,et al.. Plasmon-cavity polaritons enhance the absorption efficiency of top-incident organic thin-film solar cells[J]. Chin. J. Lumin., 2017,38(11):1532-1538. (in Chinese)
KIM I,LEE T S,JEONG D S,et al.. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells[J]. Opt. Express, 2013,21(S4):A669-A676.
JIN Y,FENG J,ZHANG X L,et al.. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode[J]. Appl. Phys. Lett., 2012,101(16):163303-1-4.
CUI Y,YAO H F,GAO B W,et al.. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell[J]. J. Am. Chem. Soc., 2017,139(21):7302-7309.
ZUO L J,CHANG C Y,CHUEH C C,et al.. Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells[J]. Energy Environ. Sci., 2015,8(6):1712-1718.
GEETHU R,KARTHA C S,VIJAYAKUMAR K P. Improving the performance of ITO/ZnO/P3HT:PCBM/Ag solar cells by tuning the surface roughness of sprayed ZnO[J]. Sol. Energy, 2015,120:65-71.
LIN H W,KANG H W,HUANG Z Y,et al.. An effective bilayer cathode buffer for highly efficient small molecule organic solar cells[J]. Org. Electron., 2012,13(10):1925-1929.
XU M,FENG J,LIU Y S,et al.. Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles[J]. Appl. Phys. Lett., 2014,105(15):153303-1-5.
WOJCIK M,MICHALAK P,TACHIYA M. Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction[J]. Appl. Phys. Lett., 2010,96(16):162102-1-3.
HUANG J,YU J S,GUAN Z Q,et al.. Improvement in open circuit voltage of organic solar cells by inserting a thin phosphorescent iridium complex layer[J]. Appl. Phys. Lett., 2010,97(14):143301-1-3.
PEUMANS P,UCHIDA S,FORREST S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003,425(6954):158-162.
MUTOLO K L,MAYO E I,RAND B P,et al.. Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells[J]. J. Am. Chem. Soc., 2006,128(25):8108-8109.
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构