浏览全部资源
扫码关注微信
南昌大学 国家硅基LED工程技术研究中心,江西 南昌,330047
纸质出版日期:2020-2-5,
网络出版日期:2019-12-20,
收稿日期:2019-11-19,
修回日期:2019-12-17,
扫 描 看 全 文
魏铎垒, 张建立, 刘军林等. p-GaN插入层调控InGaN基黄绿双波长LED发光光谱[J]. 发光学报, 2020,41(2): 146-152
WEI Duo-lei, ZHANG Jian-li, LIU Jun-lin etc. Effect of p-GaN Spacer Layer on Emission Spectrum of Yellow-green Dual Wavelength LED[J]. Chinese Journal of Luminescence, 2020,41(2): 146-152
魏铎垒, 张建立, 刘军林等. p-GaN插入层调控InGaN基黄绿双波长LED发光光谱[J]. 发光学报, 2020,41(2): 146-152 DOI: 10.3788/fgxb20204102.0146.
WEI Duo-lei, ZHANG Jian-li, LIU Jun-lin etc. Effect of p-GaN Spacer Layer on Emission Spectrum of Yellow-green Dual Wavelength LED[J]. Chinese Journal of Luminescence, 2020,41(2): 146-152 DOI: 10.3788/fgxb20204102.0146.
采用MOCVD技术在硅衬底上生长了含有7个黄光量子阱和1个绿光量子阱的混合有源区结构的InGaN基黄绿双波长LED外延材料,研究了电子阻挡层前p-GaN插入层厚度对黄绿双波长LED载流子分布及外量子效率(EQE)的影响。通过LED变温电致发光测试系统对LED光电性能进行了表征。结果表明,100 K小电流时随着电流密度的增大,三组样品的绿光峰与黄光峰相对强度的比值越来越大,且5.5 Acm
-2
的电流密度下,随着温度从300 K逐步降低至100 K,三组样品的绿光峰与黄光峰相对强度的比值也越来越大,说明其载流子都在更靠近p型层的位置发生辐射复合。三组样品的p-GaN插入层厚度为0,10,30 nm时,EQE峰值依次为29.9%、29.2%和28.2%,呈现依次减小的趋势,归因于p-GaN插入层厚度越大,p型层越远离有源区,空穴注入也越浅。电子阻挡层前p-GaN插入层可以有效减小器件EL光谱中绿光峰随着电流密度增加时峰值波长的蓝移(33 nm),实现了对低温发光光谱的调控。
InGaN-based yellow-green dual wavelength light-emitting diodes (LEDs) with seven pairs of yellow multiple quantum wells (MQWs) and a pair of green QW were grown on patterned Si substrate by metal-organic chemical vapor deposition (MOCVD). Meanwhile the effect of p-GaN spacer layer before the electron blocking layer (EBL) on the carriers distribution and external quantum efficiency (EQE) was investigated. LED photoelectric properties were characterized by LED test system. The results support the integrated EL intensity ratio of green/yellow peak increases with increasing current density at 100 K. And the integrated EL intensity ratio of green/yellow peak increases with decreasing temperature from 300 K to 100 K at a forward current density of 5.5 Acm
-2
. These experiment phenomena indicate that the radiative recombination of carriers occurs in the QW nearest the p-layer. The peaked EQE are 29.0%
29.2% and 28.2% with the thickness of p-GaN spacer layer 0
10
30 nm of three samples. The peaked EQE of three samples decrease because the active region is further from the p-layer and holes are distributed nearer the p-layer with increasing thickness of p-GaN spacer layer. p-GaN spacer layer can effectively reduce the movement (33 nm) of green peak with increasing current density and the cryogenic emission spectrum can be regulated.
硅衬底黄绿双波长LEDp-GaN插入层发光光谱
Si substrateyellow-green dual wavelength LEDsp-GaN spacer layeremission spectrum
李琪,辛易. 全光谱LED发展现状及应用前景[J]. 中国照明电器, 2017(3):12-16. LI Q,XIN Y. Advancement and trends of full spectrum LED[J]. China Light Light., 2017(3):12-16. (in Chinese)
胡耀文,高江东,全知觉,等. 电子阻挡层Al组分对Si衬底GaN基黄光LED内量子效率的影响[J]. 发光学报, 2019,40(9):1102-1107. HU Y W,GAO J D,QUAN Z J,et al.. Dependence of internal quantum efficiency of GaN-based yellow LED with Si substrate on electron blocking layer with variable Al composition[J]. Chin. J. Lumin., 2019,40(9):1102-1107. (in Chinese)
DEBNATH S,DAS D. Study of the optical properties of Zn doped Mn spinel ferrite nanocrystals shows multiple emission peaks in the visible range-a promising soft ferrite nanomaterial for deep blue LED[J]. J. Mol. Struct., 2020,1199:127044.
WANG Z X,MO C L,ZHENG C D,et al.. Effect of AlGaN interlayer in bottom quantum barriers on efficiency enhancement of InGaN green light-emitting diodes[J]. Superlattice. Microst., 2019,128:307-311.
冯思悦,梁静秋,梁中翥,等. LED微阵列投影系统设计[J]. 中国光学, 2019,12(1):88-96. FENG S Y,LIANG J Q,LIANG Z Z,et al.. Design of projection system for a micro-LED array[J]. Chin. Opt., 2019,12(1):88-96. (in Chinese)
宋少华,仝召民. 用于激光背光源电视的扫描分光与消散斑系统[J]. 光学精密工程, 2019,27(2):271-278. SONG S H,TONG Z M. Scanning beam splitting and speckle reduction system for laser backlight TV[J]. Opt. Precision Eng., 2019,27(2):271-278. (in Chinese)
刘军林,莫春兰,张建立,等. 五基色LED照明光源技术进展[J]. 照明工程学报, 2017,28(1):1-4. LIU J L,MO C L,ZHANG J L,et al.. Progress of five primary colours LED lighting source technology[J]. China Illuminating Eng. J., 2017,28(1):1-4. (in Chinese)
周孟欣,朱大庆,廖欣怡. 低蓝光危害的白光LED光源的光谱设计与优化[J]. 激光与光电子学进展, 2019,56(18):182302-1-8. ZHOU M X,ZHU D Q,LIAO X Y. Spectral design and optimization of white LED light sources with low blue light hazard[J]. Laser Optoelectr. Prog., 2019,56(18):182302-1-8. (in Chinese)
BULLOUGH J D,BIERMAN A,REAM S. Evaluating the blue-light hazard from solid state lighting[J]. Int. J. Occup. Saf. Ergo., 2019,25(2):311-320.
吴一新,杜罡,李晓艳,等. 多基色全光谱白光LED混光研究[J]. 科技创新与应用, 2018(25):24-25. WU Y X,DU G,LI X Y,et al.. The mixing technology of muli-primary color full-spectrum white LED[J]. Technol. Innov. Appl., 2018(25):24-25. (in Chinese)
江风益,刘军林,王立,等. 硅衬底高光效GaN基蓝色发光二极管[J]. 中国科学:物理学力学天文学, 2015,45(6):067302-1-18. JIANG F Y,LIU J L,WANG L,et al.. High optical efficiency GaN based blue LED on silicon substrate[J]. Sci. Sinica Phys. Mech. Astron., 2015,45(6):067302-1-18. (in Chinese)
LV Q J,LIU J L,MO C L,et al.. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure:role of enhanced interwell carrier transport[J]. ACS Photon., 2019,6(1):130-138.
JIANG F Y,ZHANG J L,XU L Q,et al.. Efficient InGaN-based yellow-light-emitting diodes[J]. Photon. Res., 2019,7(2):144-148.
PIMPUTKAR S,SPECK J S,DENBAARS S P,et al.. Prospects for LED lighting[J]. Nat. Photon., 2009,3(4):180-182.
JIANG X A,ZHENG C D,MO C L,et al.. Study on the performance of InGaN-based green LED by designing different preparing layers[J]. Opt. Mater., 2019,89:505-511.
GONTARUK O N,KOVALENKO A V,KONOREVA O V,et al.. Electroluminescence of commercial gap green-light-emitting diodes[J]. J. Appl. Spectrosc., 2014,80(6):851-854.
QI Y D,LIANG H,TANG W,et al.. Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy[J]. J. Cryst. Growth, 2004,272(1-4):333-340.
ZHANG S L,XIE E Y,YAN T X,et al.. Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection[J]. J. Appl. Phys., 2015,118(12):125709-1-7.
LIU J P,RYOU J H,DUPUIS R D,et al.. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Appl. Phys. Lett., 2008,93(2):021102-1-3.
El-GHOROURY H S,YEH M,CHEN J C,et al.. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers[J]. AIP Adv., 2016,6(7):075316-1-6.
PRASAD S,MONDAL R K,CHATTERJEE V,et al.. Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs[J]. Superlattice. Microst., 2019,132:106167.
毛清华,江风益,程海英,等. p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究[J]. 物理学报, 2010,59(11):8078-8082. MAO Q H,JIANG F Y,CHENG H Y,et al.. p-AlGaN electron blocking layer with different Al fractions on green InGaN/GaN LEDs grown on Si substrates[J]. Acta Phys. Sinica, 2010,59(11):8078-8082. (in Chinese)
HAN T C,ZHAO H D,HAN L Y,et al.. Investigation into the carrier distribution and energy-band profile in AlGaN/GaN heterostructures with a graded AlGaN buffer[J]. Semicond. Sci. Tech., 2018,33(11):115018.
0
浏览量
108
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构