1. 热带岛屿资源先进材料教育部重点实验室,海南 海口,570228
2. 海南省精细化工重点实验室,海南 海口,570228
3. 海南大学 化学工程与技术学院,海南 海口,570228
扫 描 看 全 文
黄金, 冯婷, 高助威, 等. 基于静电纺丝实验法的氧化石墨烯复合无纺布光热转换性能的特性研究[J]. 发光学报, 2020,41(2):134-139.
HUANG Jin, FENG Ting, GAO Zhu-wei, et al. Characteristics of Photothermal Conversion Performance of Graphene Oxide Composite Non-woven Fabric Based on Electrospinning Experiment[J]. Chinese Journal of Luminescence, 2020,41(2):134-139.
黄金, 冯婷, 高助威, 等. 基于静电纺丝实验法的氧化石墨烯复合无纺布光热转换性能的特性研究[J]. 发光学报, 2020,41(2):134-139. DOI: 10.3788/fgxb20204102.0134.
HUANG Jin, FENG Ting, GAO Zhu-wei, et al. Characteristics of Photothermal Conversion Performance of Graphene Oxide Composite Non-woven Fabric Based on Electrospinning Experiment[J]. Chinese Journal of Luminescence, 2020,41(2):134-139. DOI: 10.3788/fgxb20204102.0134.
氧化石墨烯是工业常用的化学试剂。为了测试其光热转换性能,采用了改进的Hummers方法制取氧化石墨烯(GO)分散液,进而通过静电纺丝制备PVA-GO复合膜,运用紫外吸收漫反射光谱(UVRS)分析了PVA-GO复合膜的吸光性能,通过电子天平连接计算机软件测量PVA-GO蒸发水量。结果表明,在一定范围内,随着GO质量浓度的增加,PVA-GO蒸发水量不断增加。当GO质量浓度达到7%时,PVA-GO复合膜能够较好地被静电纺丝成纤维网状结构,同时又具有良好的光热转换效果。通过扫描电镜(SEM)分析PVA-GO复合膜的表面特征,发现无添加GO的PVA膜是纤维丝状结构,表面光滑,且纤维直径大小一致,分布均匀。当在PVA中填充7% GO时,纤维网接而成,部分GO均匀包裹纤维丝。在真空环境下,423 K高温处理后,PVA-GO复合膜致密度增加,GO附着纤维丝程度提升。当使用980 nm红外激光辐射时,PVA-GO复合膜的蒸发速率为0.81 kg/(m,2,h),约是聚乙烯醇膜的两倍。同时,蒸发效率达到51%。这不仅提高了光热转换性能,增加了光能利用率,还可以为海水淡化的工业应用提供参考。
Graphene oxide is a chemical reagent, which is commonly used in the industry. In order to test its photothermal conversion performance, an experiment was made. The advanced Hummers method was used to prepare graphene GO dispersion, and the PVA-GO composite membrane was prepared by electrospinning. The absorbance performance was analyzed by UV reflectance spectroscopy(UVRS). The results show that the amount of evaporated water of PVA-GO was increased with the increase of GO mass concentration. This phenomenon could be measured by the electronic balance. When the GO mass concentration reached 7%, the performance of PVA-GO composite membrane would be better. The PVA-GO composite membrane was electrospinning into a fibrous network structure, which has a good photothermal conversion performance. The surface characteristics of the PVA-GO composite membrane were analyzed by SEM. The PVA membrane without added GO was a filamentous structure with a smooth surface and uniform fiber diameter distribution. When the PVA was filled with 7% GO, the fiber structure was reticular and part of the GO uniformly wraped the fiber filament. In the vacuum environment, the density of the PVA-GO composite membrane increased after the 423 K high temperature treatment and the degree of GO attaching fiber filaments increased. The evaporation rate of the PVA-GO composite membrane was 0.81 kg/(m,2,h) when irradiated with 980 nm infrared laser. The evaporation efficiency could reached 51%, which was about two times that of the polyvinyl alcohol membrane. This can not only improve the utilization of light evaporation, but also provide reference for the desalination industry.
静电纺丝实验法聚乙烯醇光热转换性能氧化石墨烯海水淡水
electrospinning experimentpolyvinyl alcoholphotothermal conversion performancegraphene oxideseawater fresh water
GU L,KOYMEN A R,MOHANTY S K. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam[J]. Sci. Rep., 2014,4:5106-1-10.
YU S T,ZHANG Y,DUAN H Z,et al.. The impact of surface chemistry on the performance of localized solar-driven evaporation system[J]. Sci. Rep., 2015,5:13600-1-10.
LIU Y M,YU S T,FENG R,et al.. A bioinspired,reusable,paper-based system for high-performance large-scale evaporation[J]. Adv. Mat., 2015,27(17):2768-2774.
LI C W,JIANG D G,HUO B B,et al.. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy, 2019,60:841-849.
邓尧,黄肖容,邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012,26(15):84-87. DENG Y,HUANG X R,WU X L. Review on graphene oxide composites[J]. Mater. Rev., 2012,26(15):84-87. (in Chinese)
MURUGAN A V,MURALIGANTH T,MANTHIRAM A. Rapid,facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage[J]. Chem. Mater., 2009,21(21):5004-5006.
FU Y,MEI T,WANG G,et al.. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids[J]. Appl. Therm. Eng., 2017,114:961-968.
GAO J,LIU F,LIU Y L,et al.. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chem. Mater., 2010,22(7):2213-2218.
陈艳华,朱丽霞. PVA/氧化石墨烯纳米复合纤维制备及性能研究[J]. 浙江纺织服装职业技术学院学报, 2016,15(4):10-14. CHEN Y H,ZHU L X. Preparation and performance of PVA/graphene oxide nanocomposite fibers[J]. J. Zhejiang Tex. Fash. Coll., 2016,15(4):10-14. (in Chinese)
胡希丽,田伟明,朱士凤,等. 聚乙烯醇氧化石墨烯导电棉织物的制备[J]. 棉纺织技术, 2016,44(4):28-32. HU X L,TIAN W M,ZHU S F,et al.. Manufacture of polyvinyl alcohol oxidized graphene conductive cotton fabric[J]. Cotton Tex. Technol., 2016,44(4):28-32. (in Chinese)
TRUONG Y B,CHOI J,MARDEL J,et al.. Functional cross-linked electrospun polyvinyl alcohol membranes and their potential applications[J]. Macromol. Mater. Eng., 2017,302(8):1700024-1-9.
CHOI Y H,LEE S S,LEE D M,et al.. Composite microgels created by complexation between polyvinyl alcohol and graphene oxide in compressed double-emulsion drops[J]. Small, 2019,doi:10.1002/smll.201903812.
PERESIN M S,HABIBI Y,ZOPPE J O,et al.. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals:manufacture and characterization[J]. Biomacromolecules, 2010,11(3):674-681.
JIN Y,CHANG J,SHI Y,et al.. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. J. Mater. Chem. A, 2018,6(17):7942-7949.
LIU Y M,CHEN J W,GUO D W,et al.. Floatable,self-cleaning,and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J]. ACS Appl. Mater. Interfaces, 2015,7(24):13645-13652.
GHASEMI H,NI G,MARCONNET A M,et al.. Solar steam generation by heat localization[J]. Nat. Commun., 2014,5:4449-1-7.
CHEN Q M,PEI Z Q,XU Y S,et al.. A durable monolithic polymer foam for efficient solar steam generation[J]. Chem. Sci., 2018,9(3):623-628.
CHANG C,TAO P,FU B W,et al.. Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux[J]. ACS Omega, 2019,4(2):3546-3555.
0
浏览量
22
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构