浏览全部资源
扫码关注微信
中国海洋大学 信息科学与工程学院,山东 青岛,266100
纸质出版日期:2020-1-5,
网络出版日期:2019-11-13,
收稿日期:2019-9-11,
修回日期:2019-10-19,
扫 描 看 全 文
程广壮, 朱翠凤, 张美婷等. 狭缝中蒸发水分子的红外吸收光谱[J]. 发光学报, 2020,41(1): 110-116
CHENG Guang-zhuang, ZHU Cui-feng, ZHANG Mei-ting etc. Infrared Absorption Spectrum of Evaporated Water Molecules in Slit[J]. Chinese Journal of Luminescence, 2020,41(1): 110-116
程广壮, 朱翠凤, 张美婷等. 狭缝中蒸发水分子的红外吸收光谱[J]. 发光学报, 2020,41(1): 110-116 DOI: 10.3788/fgxb20204101.0110.
CHENG Guang-zhuang, ZHU Cui-feng, ZHANG Mei-ting etc. Infrared Absorption Spectrum of Evaporated Water Molecules in Slit[J]. Chinese Journal of Luminescence, 2020,41(1): 110-116 DOI: 10.3788/fgxb20204101.0110.
本文研究了硅片狭缝内水分子蒸发过程中的红外光谱吸收特性。通过改变相对于硅片狭缝的红外光偏振方向(水平:偏振方向与硅片狭缝方向平行;垂直:偏振方向与硅片狭缝方向垂直),测量了水分子在3 900~3 600 cm
-1
(伸缩振动)和1 800~1 400 cm
-1
(弯曲振动)的偏振红外光吸收。结果表明,经硅片间隙蒸发出来的水分子,在3 900~3 600 cm
-1
(伸缩振动)和1 800~1 400 cm
-1
(弯曲振动)区间,对垂直偏振光吸收较强,对水平偏振光吸收较弱,表明毛细效应导致蒸发的水分子偶极矩方向倾向于硅片狭缝的法线方向。
The characteristics of polarized infrared spectroscopy of water molecules in the silicon wafer slits during capillary evaporation were explored in this article. Associated with the slit of the silicon wafer
the direction of the infrared polarized light-horizontal:the polarized direction is parallel to the direction of the silicon wafer slit; vertical:the polarized direction is perpendicular to the direction of the silicon wafer slit-was changed to measure the polarized infrared absorption of water molecules at 3 900-3 600 cm
-1
(stretching vibration) and 1 800-1 400 cm
-1
(bending vibration). The results indicated that compared with horizontally polarized light
water molecules
which is evaporated from the slit of the silicon wafers
had a strong absorption for vertically polarized light in the range of 3 900-3 600 cm
-1
(stretching vibration) and 1 800-1 400 cm
-1
(bending vibration)
demonstrating that the direction of dipole moment of water molecules evaporated by capillary action tends to the normal direction of the silicon wafers slit.
水分子蒸发毛细效应偏振红外光谱
evaporation of water moleculescapillary effectpolarized infrared spectrum
KOLWAS M,JAKUBCZYK D,DO DUC T,et al.. Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities[J]. Soft Matter, 2019,15(8):1825-1832.
KUZNETSOV G V,FEOKTISTOV D V,ORLOVA E G. Evaporation of liquid droplets from a surface of anodized aluminum[J]. Thermophys. Aeromech., 2016,23(1):17-22.
SHRIVASTAV G,REMSING R C,KASHYAP H K. Capillary evaporation of the ionic liquid[BF4] in nanoscale solvophobic confinement[J]. J. Chem. Phys., 2018,148(19):193810.
ROTH R,KROLL K M. Capillary evaporation in pores[J]. J. Phys. Condens. Matter, 2006,18(28):6517-6530.
RUSANOV A I. On the theory of capillary evaporation in porous bodies[J]. Protect. Metals Phys. Chem. Surf., 2015,51(1):36-40.
SCHMIDT M,FORTINI A,DIJKSTRA M. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit[J]. J. Phys.:Condens. Matter, 2004,16(8):S4159-S4168.
LU Z M,SALAMON T R,NARAYANAN S,et al.. Design and modeling of membrane-based evaporative cooling devices for thermal management of high heat fluxes[J]. IEEE Trans. Comp. Packag. Manuf. Technol., 2016,6(7):1056-1065.
YIOTIS A G,TSIMPANOGIANNIS I N,STUBOS A K,et al.. Pore-network study of the characteristic periods in the drying of porous materials[J]. J. Colloid Interface Sci., 2006,297(2):738-748.
CRAWFORD R,MURPHY T E,DA SILVA A K,et al.. Experimental characterization of the effects of geometric parameters on evaporative pumping[J]. Exp. Therm. Fluid Sci., 2013,51:183-188.
CALEMAN C,VAN DER SPOEL D. Temperature and structural changes of water clusters in vacuum due to evaporation[J]. J. Chem. Phys., 2006,125(15):154508-1-9.
MASON P E. Molecular dynamics study on the microscopic details of the evaporation of water[J]. Phys. Chem. A, 2011,115(23):6054-6058.
VARILLY P,CHANDLER D. Water evaporation:a transition path sampling study[J]. J. Phys. Chem. B, 2013,117(5):1419-1428.
NAGATA Y,USUI K,BONN M. Molecular mechanism of water evaporation[J]. Phys. Rev. Lett., 2015,115(23):236102-1-5.
LI Y X,ALIBAKHSHI M A,ZHAO Y H,et al.. Exploring ultimate water capillary evaporation in nanoscale conduits[J]. Nano Lett., 2017,17(8):4813-4819.
MERZ S,BALCOM B J,ENJILELA R,et al.. Magnetic resonance monitoring and numerical modeling of soil moisture during evaporation[J]. Vadose Zone J., 2018,17(1):160099-1-15.
何峰,王志军,黄义辉,等. 存在液膜的毛细蒸发过程研究[J].物理学报, 2013,62(24):246401-1-6. HE F,WANG Z J,HUANG Y H,et al.. Investigation on the capillary evaporation process based on the existence of liquid film[J]. Acta Phys. Sinica, 2013,62(24):246401-1-6. (in Chinese)
RANJAN R,MURTHY J Y,GARIMELLA S V. A microscale model for thin-film evaporation in capillary wick structures[J]. Int. J. Heat Mass Transfer, 2011,54(1-3):169-179.
ZHANG C X,REN Z Y,YIN Z G,et al.. Experimental FTIR and simulation studies on H-bonds of model polyurethane in solutions. I:in dimethylformamide (DMF)[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2011,81(1):598-603.
汪洁生,徐明婵,李春,等. 银/金刚石微粉复合材料对硝酸盐红外吸收特性的影响[J]. 光谱学与光谱分析, 2017,37(9):2737-2742. WANG J S,XU M C,LI C,et al.. Influence of infrared adsorption properties of sodium nitrate with silver/diamond powder (Ag/DP) composites[J]. Spectrosc. Spectral Anal., 2017,37(9):2737-2742. (in Chinese)
翁诗甫. 傅里叶变换红外光谱分析[M]. 第2版. 北京:化学工业出版社, 2010:6-25. WENG S F. Fourier Transform Infrared Spectroscopy[M]. 2nd ed. Beijing:Chemical Industry Press, 2010:6-25. (in Chinese)
0
浏览量
110
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构