1. 北京交通大学 全光网络与现代通信网教育部重点实验室, 北京 100044
2. 北京交通大学 光波技术研究所, 北京 100044
扫 描 看 全 文
古皓, 汤敏, 曹敏, 等. 基于环形芯光纤的超低差分模式增益涡旋光纤放大器[J]. 发光学报, 2020,41(1):55-62.
GU Hao, TANG Min, CAO Min, et al. Vortex Fiber Amplifier with Ultra-low Differential Mode Gain Based on Ring Core Fiber[J]. Chinese Journal of Luminescence, 2020,41(1):55-62.
古皓, 汤敏, 曹敏, 等. 基于环形芯光纤的超低差分模式增益涡旋光纤放大器[J]. 发光学报, 2020,41(1):55-62. DOI: 10.3788/fgxb20204101.0055.
GU Hao, TANG Min, CAO Min, et al. Vortex Fiber Amplifier with Ultra-low Differential Mode Gain Based on Ring Core Fiber[J]. Chinese Journal of Luminescence, 2020,41(1):55-62. DOI: 10.3788/fgxb20204101.0055.
提出了一种基于环形芯铒离子部分掺杂光纤的涡旋光纤放大器。针对该掺铒光纤的放大特性,研究了光纤长度、掺铒浓度与抽运功率对信号模式增益特性的影响。研究结果表明,该光纤放大器能够支持22个轨道角动量模式稳定传输,且C波段(1 530~1 565 nm)所有信号模式增益大于23 dB,信噪比高于27 dB,差分模式增益小于0.015 dB。所提出的基于环形芯光纤的涡旋光纤放大器具有支持轨道角动量模式数量多、差分模式增益低、信噪比高的优势,对于OAM复用长距离传输系统中的在线放大具有重要参考价值。
A vortex fiber amplifier is proposed, which is based on a ring core fiber with erbium ions doped partially in the ring core areas. For the amplification characteristics of the erbium-doped fiber, the effects of fiber length, erbium-doped concentration and pump power on the gain characteristics of the signal modes are studied. The results show that the proposed fiber amplifier can support 22 orbital angular momentum (OAM) modes transmit stably. Meanwhile, the gain of all signal modes is larger than 23 dB, the signal-to-noise ratio is larger than 27 dB, and the differential mode gain (DMG) is less than 0.015 dB at C band (1 530-1 565 nm). The proposed vortex fiber amplifier based on the ring core fiber has the advantages of supporting large number of orbital angular momentum modes, low differential mode gain and high signal-to-noise ratio, which has important value for online amplification in an OAM-multiplex transmission system with long distance.
光纤放大器轨道角动量有效折射率差差分模式增益自发辐射放大
fiber amplifierorbital angular momentumeffective refractive index differencedifferential mode gainamplified spontaneous emission
ALLEN L,BEIJERSBERGEN M W,SPREEUW R J C,et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys. Rev. A, 1992,45(11):8185-8189.
BOZINOVIC N,YUE Y,REN Y X,et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013,340(6140):1545-1548.
NEJAD R M,ALLAHVERDYAN K,VAITY P,et al.. Mode division multiplexing using orbital angular momentum modes over 1.4-km ring core fiber[J]. J. Lightwave Technol., 2016,34(18):4252-4258.
JUNG Y,KANG Q Y,SIDHARTHAN R,et al.. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber[J]. J. Lightwave Technol., 2017,35(3):430-436.
DASHTI P Z,ALHASSEN F,LEE H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Phys. Rev. Lett., 2006,96(4):043604-1-4.
BAI N,IP E,WANG T,et al.. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump[J]. Opt. Express, 2011,19(17):16601-16611.
JUNG Y,ALAM S,LI Z,et al.. First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems[J]. Opt. Express, 2011,19(26):B952-B957.
HO K P,KAHN J M. Mode-dependent loss and gain:statistics and effect on mode-division multiplexing[J]. Opt. Express, 2011,19(17):16612-16635.
KANG Q Y,GREGG P,JUNG Y,et al.. Amplification of 12 OAM modes in an air-core erbium doped fiber[J]. Opt. Express, 2015,23(22):28341-28348.
MA J W,XIA F,LI S H,et al.. Design of orbital angular momentum(OAM) erbium doped fiber amplifier with low differential modal gain[C]. Proceedings of Optical Fiber Communications Conference and Exhibition,Los Angeles, 2015:1-3.
HAN D,ZHANG H,XI L X,et al.. Two-layer erbium doped annular photonic crystal fiber amplifier for orbital angular momentum multiplexing system[C]. Proceedings of 2018 Asia Communications and Photonics Conference,Hangzhou,China, 2018:1-3.
RAMACHANDRAN S,KRISTENSEN P. Optical vortices in fiber[J]. Nanophotonics, 2013,2(5-6):455-474.
ZHANG H,ZHANG X G,LI H,et al.. The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure[J]. Crystals, 2017,7(10):286.
BRUNET C,VAITY P,MESSADDEQ Y,et al.. Design,fabrication and validation of an OAM fiber supporting 36 states[J]. Opt. Express, 2014,22(21):26117-26127.
DRAGIC P D,CAVILLON M,BALLATO J. Materials for optical fiber lasers:a review[J]. Appl. Phys. Rev., 2018,5(4):041301-1-37.
LE COCQ G,BIGOT L,LE ROUGE A,et al.. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing[J]. Opt. Express, 2012,20(24):27051-27061.
廖素英,巩马理,张海涛. 部分掺杂光纤掺杂半径的选择[J]. 中国激光, 2009,36(11):2836-2841. LIAO S Y,GONG M L,ZHANG H T. Selection of doping radius for part-doped fibers[J]. Chin. J. Lasers, 2009,36(11):2836-2841. (in Chinese)
HARDY A,ORON R. Signal amplification in strongly pumped fiber amplifiers[J]. IEEE J. Quantum Electron., 1997,33(3):307-313.
HARDY A A,ORON R. Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers[J]. J. Lightwave Technol., 1998,16(10):1865-1873.
GONG M L,YUAN Y Y,LI C,et al.. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers[J]. Opt. Express, 2007,15(6):3236-3246.
程成,程潇羽. 光纤放大原理及器件优化设计[M]. 北京:科学出版社, 2011:67-68. CHENG C,CHENG X Y. Optical Fiber Amplitud Principle and Device Optimization Design[M]. Beijing:Science Press,2011:67-68. (in Chinese)
彭拥军,邱昆,邱琪. 掺铒光纤放大器放大的自发辐射噪声的研究[J]. 电子科技大学学报, 1998,27(4):362-366. PENG Y J,QIU K,QIU Q. Study of amplified spontaneous emission in erbium-doped fiber amplifier[J]. J. Univ. Electron. Sci. Technol. China, 1998,27(4):362-366. (in Chinese)
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构