浏览全部资源
扫码关注微信
1. 宁波大学 信息科学与工程学院,浙江 宁波,315211
2. 温州大学 数理与电子信息工程学院,浙江 温州,325053
收稿日期:2019-06-26,
修回日期:2019-08-20,
网络出版日期:2019-08-26,
纸质出版日期:2019-11-05
移动端阅览
张涵, 汪鹏君, 张晓伟等. 硫化亚锡薄膜的可控制备及其光伏特性[J]. 发光学报, 2019,40(11): 1327-1333
ZHANG Han, WANG Peng-jun, ZHANG Xiao-wei etc. Controllable Preparation and Photovoltaic Property of SnS Thin Films[J]. Chinese Journal of Luminescence, 2019,40(11): 1327-1333
张涵, 汪鹏君, 张晓伟等. 硫化亚锡薄膜的可控制备及其光伏特性[J]. 发光学报, 2019,40(11): 1327-1333 DOI: 10.3788/fgxb20194011.1327.
ZHANG Han, WANG Peng-jun, ZHANG Xiao-wei etc. Controllable Preparation and Photovoltaic Property of SnS Thin Films[J]. Chinese Journal of Luminescence, 2019,40(11): 1327-1333 DOI: 10.3788/fgxb20194011.1327.
由于具有较大的光学吸收系数与低廉的材料成本,硫化亚锡(SnS)在新型薄膜太阳能电池中展现出巨大的应用前景。为了实现SnS薄膜的可控制备,进而研究其光伏特性,首先,利用脉冲电沉积法在不同工艺条件下制备了一系列SnS薄膜;然后,通过X射线衍射(XRD)技术与扫描电子显微镜(SEM)对薄膜的晶体结构与表面形貌进行表征,结合紫外-可见-近红外吸收光谱测试结果,研究两种不同开启脉冲电压对SnS薄膜禁带宽度的影响。同时,采用莫特-肖特基方程定量计算了SnS薄膜的导电类型与掺杂浓度。在此基础上,设计了基于Au/SnS/CdS/ITO异质结的原型光伏器件。在AM1.5标准太阳光照射下,原型器件开路电压为111 mV,短路电流密度为20.81 A/cm
2
。为未来低成本、高性能的薄膜太阳能电池吸收层材料研究提供了理论基础和实验依据。
Due to the large optical absorption coefficient and low raw material cost
tin(Ⅱ) sulfide (SnS) has shown tremendous application foreground for the novel thin film solar cells. In order to achieve the controllable preparation and then investigate the photovoltaic property of SnS thin films
under different process parameters
we fabricate a series of SnS thin films with the pulse electro-deposition method. Then
the crystal structure and surface morphology of SnS thin film are investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). And the relationship between the two different turn-on pulse potentials and optical band-gaps is explored by UV-Vis-NIR absorptance spectra. Meanwhile
both the conductivity type and doping concentration are evaluated by Mott-Schottky equation. On the basis of the content above
the Au/SnS/CdS/ITO heterojunction-based photovoltaic prototype device is designed and demonstrates the open circuit voltage of 111 mV and short circuiting current density of 20.81 A/cm
2
which will provide theoretic and experimental basis for further research of low-cost and high-performance absorbing layer of thin film solar cells.
郭凯,张传升. 铜铟镓硒薄膜太阳能电池新型图形化透明前电极研究[J]. 发光学报, 2019,40(2):204-208. GUO K,ZHANG C S. Improved performance of CuInGaSe2 solar cells with patterned front contact[J]. Chin. J. Lumin., 2019,40(2):204-208. (in Chinese)
LANGENHORST M,SAUTTER B,SCHMAGER R,et al.. Energy yield of all thin-film perovskite/CIGS tandem solar modules[J]. Prog. Photovoltaics, 2019,27(4):290-298.
KHATRI I,SHUDO K,MATSUURA J,et al.. Impact of heat-light soaking on potassium fluoride treated CIGS solar cells with CdS buffer layer[J]. Prog. Photovoltaics, 2018,26(3):171-178.
余亮,梁齐,刘磊,等. 膜厚对射频磁控溅射法制备的SnS薄膜结构和光学性质的影响[J]. 发光学报, 2015,36(4):429-436. YU L,LIANG Q,LIU L,et al.. Effect of thickness on the structure and optical properties of SnS films fabricated by RF magnetron sputtering[J]. Chin. J. Lumin., 2015,36(4):429-436. (in Chinese)
GAO C,SHEN H L,SUN L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition[J]. Appl. Surf. Sci., 2011,257(15):6750-6755.
BASAK A,HATI A,MONDAL A,et al.. Effect of substrate on the structural,optical and electrical properties of SnS thin films grown by thermal evaporation method[J]. Thin Solid Films, 2018,645:97-101.
ARULANANTHAM A M S,VALANARASU S,JEYADHEEPAN K,et al.. Effect of carrier gas pressure on structural,optical and photovoltaic properties of tin sulphide thin films prepared by nebulizer spray pyrolysis method[J]. Bull. Mater. Sci., 2019,42(3):100-1-13.
刘丹丹,李学留,李琳,等. 射频磁控溅射法制备SnS薄膜及其结构和光学特性[J]. 发光学报, 2016,37(9):1114-1123. LIU D D,LI X L,LI L,et al.. Structural and optical properties of SnS films prepared by RF magnetron sputtering[J]. Chin. J. Lumin., 2016,37(9):1114-1123. (in Chinese)
CHO J Y,SINHA S,GANG M G,et al.. Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency[J]. J. Alloys Compd., 2019,796:160-166.
TAKANO Y,OYAIZU K. Fabrication of SnS-MgSnO heterojunction solar cells using vacuum thermal evaporation and sol-gel method[J]. Mater. Lett., 2018,228:414-417.
ARULANANTHAM A M S,VALANARASU S,KATHALINGAM A,et al.. An investigation on SnS layers for solar cells fabrication with CdS,SnS2 and ZnO window layers prepared by nebulizer spray method[J]. Appl. Phys. A, 2018,124(11):776-1-12.
REDDY K T R,REDDY N K,MILES R W. Photovoltaic properties of SnS based solar cells[J]. Sol. Energy Mater. Sol. Cells, 2006,90(18-19):3041-3046.
MIYAWAKI T,ICHIMURA M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells[J]. Mater. Lett., 2007,61(25):4683-4686.
GHOSH B,DAS M,BANERJEE P,et al.. Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films[J]. Semicond. Sci. Technol., 2009,24(2):025024-1-7.
TAYLOR A,SINCLAIR H. On the determination of lattice parameters by the Debye-Scherrer method[J]. Proc. Phys. Soc., 1945,57(2):126-135.
O'LEARY S K,LIM P K. On determining the optical gap associated with an amorphous semiconductor:a generalization of the Tauc model[J]. Solid State Commun., 1997,104(1):17-21.
喀哈尔玉苏普,林涛,耿雷,等. 脉冲电沉积法制备SnS薄膜及其光电性质研究[J]. 真空科学与技术学报, 2012,32(8):682-687. YUSUPU K,LIN T,GENG L,et al.. Growth of SnS film by pulsed electrodeposition and its optoelectronic properties[J]. Chin. J. Vac. Sci. Technol., 2012,32(8):682-687. (in Chinese)
CHEUNG S K,CHEUNG N W. Extraction of Schottky diode parameters from forward current-voltage characteristics[J]. Appl. Phys. Lett., 1986,49(2):85-87.
KABOUCHE S,LOUAFI Y,BELLAL B,et al.. Electrochemical growth of SnS thin film:application to the photocatalytic degradation of rhodamine B under visible light[J]. Appl. Phys. A, 2017,123(8):545-1-8.
ICHIMURA M,TAKEUCHI K,ONO Y,et al.. Electrochemical deposition of SnS thin films[J]. Thin Solid Films, 2000,361-362:98-101.
REDDY K T R,REDDY P P,DATTA R K,et al.. Formation of polycrystalline SnS layers by a two-step process[J]. Thin Solid Films, 2002,403-404:116-119.
NABI Z,KELLOU A,MABIH S,et al.. Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds[J]. Mater. Sci. Eng. B, 2003,98(2):104-115.
MICHAEL G,HU G W,ZHENG D Q,et al.. Piezo-phototronic solar cell based on 2D monochalcogenides materials[J]. J. Phys. D:Appl. Phys., 2019,52(20):204001.
BARRIOS-SALGADO E,RODR GUEZ-GUADARRAMA L A,GARCA M L R,et al.. Thin film solar cells of cubic structured SnS-SnSe[J]. Phys. Status Solidi A, 2017,214(10):1700036.
REDDY N K,REDDY K T R. SnS films for photovoltaic applications:physical investigations on sprayed SnxSy films[J]. Phys. B Condens. Matter, 2005,368(1-4):25-31.
CROWELL C R,SZE S M. Electron-optical-phonon scattering in the emitter and collector barriers of semiconductor-metal-semiconductor structures[J]. Solid-State Electron., 1965,8(12):979-990.
LIM D,SUH H,SURYAWANSHI M,et al.. Kinetically controlled growth of phase-pure SnS absorbers for thin film solar cells:achieving efficiency near 3% with long-term stability using an SnS/CdS heterojunction[J]. Adv. Energy Mater., 2018,8(10):1702605.
RODRGUEZ-VALENCIA J M,ADENDAO-GUIN S H,ROJAS-BLANCO L. Admix of Cu2ZnSnS4 and ZnS as thin film to absorb visible light[J]. J. Mater. Sci. Mater. Electron., 2019,30(5):5266-5272.
RISTOV M,SINADINOVSKI G,MITRESKI M,et al.. Photovoltaic cells based on chemically deposited p-type SnS[J]. Solar Energy Mater. Sol. Cell, 2001,69(1):17-24.
VALDS M H,VZQUEZ M. Pulsed electrodeposition of p-type CuInSe2 thin films[J]. Electrochim. Acta, 2011,56(19):6866-6873.
0
浏览量
206
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构