浏览全部资源
扫码关注微信
1. 华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
2. 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
收稿日期:2019-01-03,
修回日期:2019-03-08,
网络出版日期:2019-03-12,
纸质出版日期:2019-09-05
移动端阅览
周艺聪, 宁洪龙, 王一平等. 柔性电极的喷墨印刷制备[J]. 发光学报, 2019,40(9): 1146-1158
ZHOU Yi-cong, NING Hong-long, WANG Yi-ping etc. Fabrication of Inkjet-printed Flexible Electrode[J]. Chinese Journal of Luminescence, 2019,40(9): 1146-1158
周艺聪, 宁洪龙, 王一平等. 柔性电极的喷墨印刷制备[J]. 发光学报, 2019,40(9): 1146-1158 DOI: 10.3788/fgxb20194009.1146.
ZHOU Yi-cong, NING Hong-long, WANG Yi-ping etc. Fabrication of Inkjet-printed Flexible Electrode[J]. Chinese Journal of Luminescence, 2019,40(9): 1146-1158 DOI: 10.3788/fgxb20194009.1146.
相对传统制备方法,喷墨印刷作为一种低成本、直接图形化、无接触的薄膜沉积技术,可将导电材料直接在衬底上图形化,从而大幅节约时间和材料成本,在柔性器件生产中显示出巨大的潜力。为了满足柔性电子低温制备的需求,喷墨印刷制备柔性电极不仅要考虑高性能低温型导电墨水的制备,还要关注烧结技术的低温应用。本文对柔性电极的喷墨印刷制备技术的研究进展进行了总结,分别对导电材料和烧结技术的低温应用进行介绍并分析现阶段存在的问题,并对喷墨印刷柔性电极的未来发展方向进行了展望。
Compared with traditional technology
inkjet printing as a cost effective
direct patterning and noncontact deposition technology
can be used to directly pattern conductive materials onto substrates leading to less process time and lower material cost
and shows incomparable potential in the manufacture of flexible electronic devices. To meet the demand of low-temperature manufacture of flexible electronic devices
not only the fabrication of low-temperature and high performance conductive materials but also the low-temperature applications of sintering technologies should be taken into consideration. This paper offers a retrospection of the research efforts in inkjet printing flexible electrodes
and provides elaborate descriptions about conductive materials and low-temperature applications of sintering technologies. The problems restricting the applications of different conductive materials and sintering technologies in flexible electrodes are paid attentions
and the future direction of inkjet printing flexible electrodes is pointed out.
邝旻翾,王京霞,王利彬,等. 喷墨打印高精度图案研究进展[J]. 化学学报, 2012,70(18):1889-1896. KUANG M X,WANG J X,WANG L B,et al.. Research progress of high-precision patterns by directly inkjet printing[J]. Acta Chim. Sinica, 2012,70(18):1889-1896. (in Chinese)
NING H L,TAO R Q,FANG Z Q,et al.. Direct patterning of silver electrodes with 2.4m channel length by piezoelectric inkjet printing[J]. J. Colloid Interface Sci., 2017,487:68-72.
CASTRO H F,SOWADE E,ROCHA J G,et al.. All-inkjet-printed bottom-gate thin-film transistors using UV curable dielectric for well-defined source-drain electrodes[J]. J. Electron. Mater., 2014,43(7):2631-2636.
SHU Z,BECKERT E,EBERHARDT R,et al.. ITO-free,inkjet-printed transparent organic light-emitting diodes with a single inkjet-printed Al:ZnO:PEI interlayer for sensing applications[J]. J. Mater. Chem. C, 2017,5(44):11590-11597.
SCALISI R G,PALEARI M,FAVETTO A,et al.. Inkjet printed flexible electrodes for surface electromyography[J]. Org. Electron., 2015,18:89-94.
ALLEN M,LEE C,AHN B,et al.. R2R gravure and inkjet printed RF resonant tag[J]. Microelectron. Eng., 2011,88(11):3293-3299.
SHIN D Y. Fabrication of an inkjet-printed seed pattern with silver nanoparticulate ink on a textured silicon solar cell wafer[J]. J. Micromech. Microeng., 2010,20(12):125003-1-10.
YAMBEM S D,LIAO K S,CURRAN S A. Flexible Ag electrode for use in organic photovoltaics[J]. Solar Energy Mater. Solar Cells, 2011,95(11):3060-3064.
孙晓娜,周洪波,李刚,等. 三维柔性神经微电极阵列的制作[J]. 光学精密工程, 2008,16(8):1396-1402. SUN X N,ZHOU H B,LI G,et al.. Fabrication of a flexible three-dimensional neural microelectrode array[J]. Opt. Precision Eng., 2008,16(8):1396-1402. (in Chinese)
孙晓娜,李刚,朱壮晖,等. 丘形柔性神经微刺激电极阵列[J]. 光学精密工程, 2009,17(9):2176-2183. SUN X N,LI G,ZHU Z H,et al.. Dome-shaped flexible microelectrode arrays for neural stimulation[J]. Opt. Precision Eng., 2009,17(9):2176-2183. (in Chinese)
陈港,彭从星,况宇迪,等. 纳米纸衬底的制备、性能及其在柔性电子器件中的应用[J]. 材料工程, 2018,46(6):1-10. CHEN G,PENG C X,KUANG Y D,et al.. Preparation,properties and applications of nanopaper substrates for flexible electronics[J]. J. Mater. Eng., 2018,46(6):1-10. (in Chinese)
KIM N,UM H D,CHOI I,et al.. 18.4%-efficient heterojunction Si solar cells using optimized ITO/top electrode[J]. ACS Appl. Mater. Interfaces, 2016,8(18):11412-11417.
TABASSUM S,YAMASUE E,OKUMURA H,et al.. Synthesis and environmental stability of silver,nickel and calcium co-doped AZO transparent electrode[C]. Proceedings of 2015 International Conference on Electrical & Electronic Engineering,Rajshahi,Bangladesh, 2015:157-160.
LEE H S,WOO S I. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode[J]. Electron. Mater. Lett., 2016,12(4):499-505.
LI Y Z,LAN L F,SUN S,et al.. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns[J]. ACS Appl. Mater. Interfaces, 2017,9(9):8194-8200.
MUSTONEN T,KORDS K,SAUKKO S,et al.. Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites[J]. Phys. Status Solidi B, 2007,244(11):4336-4340.
SHIMONI A,AZOUBEL S,MAGDASSI S. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by "coffee ring effect"[J]. Nanoscale, 2014,6(19):11084-11089.
GORKINA A L,TSAPENKO A P,GILSHTEYN E P,et al.. Transparent and conductive hybrid graphene/carbon nanotube films[J]. Carbon, 2016,100:501-507.
KAMYSHNY A,STEINKE J,STEINKE S. Metal-based inkjet inks for printed electronics[J]. Open Appl. Phys. J., 2011,4(1):19-36.
YANG X J,HE W,WANG S X,et al.. Preparation of high-performance conductive ink with silver nanoparticles and nanoplates for fabricating conductive films[J]. Mater. Manuf. Process., 2012,28(1):1-4.
CHANG Y,WANG D Y,TAI Y L,et al.. Preparation,characterization and reaction mechanism of a novel silver-organic conductive ink[J]. J. Mater. Chem., 2012,22(48):25296-25301.
KIM J H,KIM K S,JANG K R,et al.. Enhancing adhesion of screen-printed silver nanopaste films[J]. Adv. Mater. Interfaces, 2015,2(13):1500283-1-7.
ALLEN G L,BAYLES R A,GILE W W,et al.. Small particle melting of pure metals[J]. Thin Solid Films, 1986,144(2):297-308.
JIANG Q,ZHANG S,ZHAO M. Size-dependent melting point of noble metals[J]. Mater. Chem. Phys., 2003,82(1):225-227.
DONG Y,LI X D,LIU S H,et al.. Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications[J]. Thin Solid Films, 2015,589:381-387.
YANG C G,FANG Z Q,NING H L,et al.. Amorphous InGaZnO thin film transistor fabricated with printed silver salt ink source/drain electrodes[J]. Appl. Sci., 2017,7(8):844-1-7.
TAO Y,LI J,LI K,et al.. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics[J]. Org. Electron., 2017,41:179-185.
LIU C H,YU X. Silver nanowire-based transparent,flexible,and conductive thin film[J]. Nanoscale Res. Lett., 2011,6(1):75-1-8.
KIRAN KUMAR A B V,WAN BAE C,PIAO L H,et al.. Silver nanowire based flexible electrodes with improved properties:high conductivity,transparency,adhesion and low haze[J]. Mater. Res. Bull., 2013,48(8):2944-2949.
HERMERSCHMIDT F,BURGUS-CEBALLOS I,SAVVA A,et al.. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines[J]. Flexible Printed Electron., 2016,1(3):035004-1-11.
WNSCHER S,ABBEL R,PERELAER J,et al.. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices[J]. J. Mater. Chem. C, 2014,2(48):10232-10261.
MERCHE D,VANDENCASTEELE N,RENIERS F. Atmospheric plasmas for thin film deposition:a critical review[J]. Thin Solid Films, 2012,520(13):4219-4236.
FARRAJ Y,SMOOHA A,KAMYSHNY A,et al.. Plasma-induced decomposition of copper complex ink for the formation of highly conductive copper tracks on heat-sensitive substrates[J]. ACS Appl. Mater. Interfaces, 2017,9(10):8766-8773.
REINHOLD I,HENDRIKS C E,ECKARDT R,et al.. Argon plasma sintering of inkjet printed silver tracks on polymer substrates[J]. J. Mater. Chem., 2009,19(21):3384-3388.
WOLF F M,PERELAER J,STUMPF S,et al.. Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas[J]. J. Mater. Res., 2013,28(9):1254-1261.
KWON Y T,LEE Y I,KIM S,et al.. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering[J]. Appl. Surf. Sci., 2017,396:1239-1244.
LE H P. Progress and trends in ink-jet printing technology[J]. J. Imaging Sci. Technol., 1998,42(1):49-62.
SON Y,YEO J,MOON H,et al.. Nanoscale electronics:digital fabrication by direct femtosecond laser processing of metal nanoparticles[J]. Adv. Mater., 2011,23(28):3176-3181.
YOON Y H,YI S M,YIM J R,et al.. Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films[J]. Microelectron. Eng., 2010,87(11):2230-2233.
CAI Z X,ZENG X Y,LIU J G. Laser direct writing of conductive silver film on polyimide surface from decomposition of organometallic ink[J]. J. Electron. Mater., 2011,40(3):301-305.
CHIOLERIO A,MACCIONI G,MARTINO P,et al.. Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics[J]. Microelectron. Eng., 2011,88(8):2481-2483.
MAEKAWA K,YAMASAKI K,NⅡZEKI T,et al.. Drop-on-demand laser sintering with silver nanoparticles for electronics packaging[J]. IEEE Trans. Compon. Packag. Manuf. Technol., 2012,2(5):868-877.
LEE S H,LEE D J,LEE C K,et al.. Direct fabrication of microelectrodes on a polymer substrate using selective ultrashort pulsed laser ablation of inkjet-printed Ag lines[J]. Phys. Status Solidi A, 2012,209(11):2142-2146.
NING H L,ZHOU Y C,FANG Z Q,et al.. UV-cured inkjet-printed silver gate electrode with low electrical resistivity[J]. Nanoscale Res. Lett., 2017,12(1):546-1-7.
NING H L,CHEN J Q,FANG Z Q,et al.. Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors[J]. Materials, 2017,10(1):51-1-7.
POLZINGER B,SCHOEN F,MATIC V,et al.. UV-sintering of inkjet-printed conductive silver tracks[C]. Proceedings of The 201111th IEEE International Conference on Nanotechnology,Portland,OR,USA, 2011:201-204.
CHERRINGTON M,CLAYPOLE T C,DEGANELLO D,et al.. Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink[J]. J. Mater. Chem., 2011,21(21):7562-7564.
TOBJRK D,AARNIO H,PULKKINEN P,et al.. IR-sintering of ink-jet printed metal-nanoparticles on paper[J]. Thin Solid Films, 2012,520(7):2949-2955.
KANG J S,RYU J,KIM H S,et al.. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light[J]. J. Electron. Mater., 2011,40(11):2268-2277.
CHUNG W H,HWANG H J,LEE S H,et al.. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics[J]. Nanotechnology, 2013,24(3):035202-1-8.
LEE D J,PARK S H,JANG S,et al.. Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate[J]. J. Micromech. Microeng., 2011,21(12):125023-1-7.
WU X Z,SHAO S S,CHEN Z,et al.. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate[J]. Nanotechnology, 2017,28(3):035203-1-9.
JIU J T,SUGAHARA T,NOGI M,et al.. High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates:the effect of the thermal properties of substrates on the performance of silver films[J]. Nanoscale, 2013,5(23):11820-11828.
陈鼎,李林,陈振华. 金属材料微波烧结的研究现状[J]. 机械工程材料, 2012,36(7):7-10. CHEN D,LI L,CHNE Z H. Research status of microwave sintering for metal materials[J]. Mater. Mech. Eng., 2012,36(7):7-10. (in Chinese)
PERELAER J,DE GANS B J,SCHUBERT U S. Ink-jet printing and microwave sintering of conductive silver tracks[J]. Adv. Mater., 2006,18(16):2101-2104.
CAUCHOIS R,SAADAOUI M,YAKOUB A,et al.. Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles[J]. J. Mater. Sci., 2012,47(20):7110-7116.
JUNG S,CHUN S J,HAN J T,et al.. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates[J]. Nanoscale, 2016,8(9):5343-5349.
MOON S J. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering[J]. J. Nanosci. Nanotechnol., 2013,13(9):6174-6178.
KRAVCHUK O,BOBITSKI Y,REICHENBERGER M. Electrical sintering of inkjet printed sensor structures on plyimide substrate[C]. Proceedings of The 2016 IEEE 36th International Conference on Electronics and Nanotechnology,Kiev,Ukraine, 2016:104-106.
CHEN S P,KAO Z K,LIN J L,et al.. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures[J]. ACS Appl. Mater. Interfaces, 2012,4(12):7064-7068.
0
浏览量
384
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构