浏览全部资源
扫码关注微信
大连工业大学 光子学研究所,辽宁 大连,116034
收稿日期:2019-06-02,
修回日期:2019-07-12,
网络出版日期:2019-06-13,
纸质出版日期:2019-09-05
移动端阅览
吴江, 曹冠英, 张彦杰等. CsPbBr<sub>3</sub>钙钛矿量子点微晶的制备及发光性能[J]. 发光学报, 2019,40(9): 1073-1078
WU Jiang, CAO Guan-ying, ZHANG Yan-jie etc. Preparation and Luminescence Properties of CsPbBr<sub>3</sub> Perovskite Quantum Dot Microcrystals[J]. Chinese Journal of Luminescence, 2019,40(9): 1073-1078
吴江, 曹冠英, 张彦杰等. CsPbBr<sub>3</sub>钙钛矿量子点微晶的制备及发光性能[J]. 发光学报, 2019,40(9): 1073-1078 DOI: 10.3788/fgxb20194009.1073.
WU Jiang, CAO Guan-ying, ZHANG Yan-jie etc. Preparation and Luminescence Properties of CsPbBr<sub>3</sub> Perovskite Quantum Dot Microcrystals[J]. Chinese Journal of Luminescence, 2019,40(9): 1073-1078 DOI: 10.3788/fgxb20194009.1073.
为提高CsPbBr
3
钙钛矿量子点稳定性并实现具有优良发光性能量子点固体材料的制备,采用高温熔融方法成功地在硼硅酸盐微晶内部制备了CsPbBr
3
量子点,得到CsPbBr
3
量子点微晶。通过SEM扫描电镜测试分析量子点微晶的形貌特征;通过荧光光谱、CIE色度坐标分析其荧光特性。SEM扫描电镜测试结果表明,在微晶表面及内部均匀分布着粒径为10 nm左右的CsPbBr
3
量子点,实现了硼硅酸盐微晶对CsPbBr
3
量子点的有效包覆。荧光光谱测试表明,CsPbBr
3
量子点微晶表现出宽的激发光谱,且可以在360 nm波长紫外光激发下实现较强的517 nm绿光发射。发射光谱及CIE坐标表明在400℃高温环境下该CsPbBr
3
量子点微晶材料仍能保持优异的光学性能。该量子点微晶材料的成功制备为钙钛矿材料在新型固体发光材料领域的发展提供了可能性。
In order to improve the stability of CsPbBr
3
perovskite quantum dots and realize the preparation of solid quantum dot materials with excellent luminescence properties
CsPbBr
3
quantum dots were successfully prepared in the borosilicate microcrystals by high temperature melting method to obtain CsPbBr
3
quantum dot microcrystals. The particle morphology of the microcrystals was tested by scanning electron microscopy(SEM). The fluorescence characteristics were analyzed by fluorescence spectroscopy and CIE chromaticity coordinates. SEM images show that CsPbBr
3
quantum dots with a particle size of about 10 nm are uniformly distributed on the surface and inside of the microcrystals
and the effective coating of CsPbBr
3
quantum dots by borosilicate microcrystals was realized. Fluorescence spectroscopy tests show that CsPbBr
3
quantum dot microcrystals exhibit a broad excitation spectrum and can achieve strong 517 nm green emission at 360 nm wavelength excitation. The emission spectra and CIE coordinates indicate that the CsPbBr
3
quantum dot microcrystals can maintain excellent optical properties at 400℃. The successful preparation of the quantum dot microcrystalline material provides the possibility for the development of perovskite materials in the field of new solid luminescent materials.
陈肖慧,季思航,袁曦,等. Mn掺杂CsPbCl3钙钛矿量子点的发光性质[J]. 发光学报, 2018,39(5):609-614. CHEN X H,JI S H,YUAN X,et al.. Photoluminescence properties of Mn doped CsPbCl3 perovskite quantum dots[J]. Chin. J. Lumin., 2018,39(5):609-614. (in Chinese)
BEAL R E,SLOTCAVAGE D J,LEIJTENS T,et al.. Cesium lead halide perovskites with improved stability for tandem solar cells[J]. J. Phys. Chem. Lett., 2016,7(5):746-751.
RAVI V K,MARKAD G B,NAG A,et al.. Band edge energies and excitonic transition probabilities of colloidal CsPbX3(X=Cl,Br,I) perovskite nanocrystals[J]. ACS Energy Lett., 2016,1(4):665-671.
YANG W S,NOH J H,SEOK S I,et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015,348(6240):1234-1237.
EPERON G E,STRANKS S D,MENELAOU C,et al.. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7(3):982-988.
MEI A Y,LI X,LIU L F,et al.. A hole-conductor-free,fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014,345(6194):295-298.
SEKI K. Equivalent circuit representation of hysteresis in solar cells that considers interface charge accumulation:potential cause of hysteresis in perovskite solar cells[J]. Appl. Phys. Lett., 2016,109(3):033905-1-10.
ZHANG X Y,SUN C,ZHANG Y,et al.. Bright perovskite nanocrystal films for efficient light-emitting devices[J]. J. Phys. Chem. Lett., 2016,7(22):4602-4610.
LI G R,TAN Z K,DI D W,et al.. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix[J]. Nano Lett., 2015,15(4):2640-2644.
KIM Y H,CHO H,HEO J H,et al.. Multicolored organic/inorganic hybrid perovskite light-emitting diodes[J]. Adv. Mater., 2015,27(7):1248-1254.
DESCHLER F,PRICE M,PATHAK S,et al.. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. J. Phys. Chem. Lett., 2014,5(8):1421-1426.
WANG Y,LI X M,SONG J Z,et al.. All-inorganic colloidal perovskite quantum dots:a new class of lasing materials with favorable characteristics[J]. Adv. Mater., 2015,27(44):7101-7108.
RAMASAMY P,LIM D,KIM B,et al.. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chem. Commun., 2016,52(10):2067-2070.
PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al.. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence[J]. J. Am. Chem. Soc., 2016,138(43):14202-14205.
WANG H C,LIN S Y,TANG A C,et al.. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angew. Chem. Int. Ed., 2016,55(28):7924-7929.
ZHANG F,SHI Z F,LI Y,LI S,et al.. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices[J]. Nanoscale, 2018,10(43):20131-20139.
PATHAK S,SAKAI N,STRANKS S D,et al.. Perovskite crystals for tunable white light emission[J]. Chem. Mater., 2015,27(23):8066-8075.
KIM Y,YASSITEPE E,VOZNYY O,et al.. Efficient luminescence from perovskite quantum dot solids[J]. ACS Appl. Mater. Interfaces, 2015,7(45):25007-25013.
LI X M,WU Y,ZHANG S L,et al.. Quantum dots:CsPbX3 quantum dots for lighting and displays:room-temperature synthesis,photoluminescence superiorities,underlying origins and white light-emitting diodes[J]. Adv. Funct. Mater., 2016,26(15):2584.
SUN C,ZHANG Y,RUAN C,et al.. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots[J]. Adv. Mater., 2016,28(45):10088-10094.
HUANG H,SUSHA A S,KERSHAW S V,et al.. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. Adv. Sci. (Weinh), 2015,2(9):1500194-1-5.
XU K Y,LIN C C,XIE X B,et al.. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chem. Mater., 2017,29(10):4265-4272.
CHEN W W,HAO J Y,HU W,et al.. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure[J]. Small, 2017,13(21):1604085-1-8.
ZHANG M H,WANG K,DU Y J,et al.. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite[J]. J. Am. Chem. Soc., 2017,139(10):3889-3895.
SONAWANE R S,APTE S K,NAIK S D,et al.. Preparation and optical study of CdS nanocrystals embedded phosphate glass[J]. Mater. Res. Bull., 2008,43(3):618-624.
XIA M L,LIU C,ZHAO Z Y,et al.. Formation and optical properties of ZnSe and ZnS nanocrystals in glasses[J]. J. Non-Cryst. Solids, 2015,429:79-82.
XU K,LIU C,CHUNG W J,et al.. Optical properties of CdSe quantum dots in silicate glasses[J]. J. Non-Cryst. Solids, 2010,356(44-49):2299-2301.
DI X X,HU Z M,JIANG J T,et al.. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chem. Commun., 2017,53(80):11068-11071.
LIU S J,HE M L,DI X X,et al.. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3,X=Br,I) QDs in borosilicate glass[J]. Ceram. Int., 2018,44(4):4496-4499.
DI X X,SHEN L D,JIANG J T,et al.. Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles[J]. J. Alloys Compd., 2017,729:526-532.
YUAN X,HOU X M,LI J,et al.. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals[J]. Phys. Chem. Chem. Phys., 2017,19(13):8934-8940.
0
浏览量
356
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构