浏览全部资源
扫码关注微信
1. 太原科技大学 应用科学学院,山西 太原,030024
2. 晋中学院,山西 太原,030619
3. 电磁防护材料及技术山西省重点实验室,山西 太原,030006
收稿日期:2018-12-18,
修回日期:2019-02-26,
网络出版日期:2019-03-26,
纸质出版日期:2019-08-05
移动端阅览
赵亚丽, 马富花, 贾琨等. 金属光子晶体的可见光光谱特性[J]. 发光学报, 2019,40(8): 1001-1010
ZHAO Ya-li, MA Fu-hua, JIA Kun etc. Optical Characteristics of Metallic Photonic Crystals[J]. Chinese Journal of Luminescence, 2019,40(8): 1001-1010
赵亚丽, 马富花, 贾琨等. 金属光子晶体的可见光光谱特性[J]. 发光学报, 2019,40(8): 1001-1010 DOI: 10.3788/fgxb20194008.1001.
ZHAO Ya-li, MA Fu-hua, JIA Kun etc. Optical Characteristics of Metallic Photonic Crystals[J]. Chinese Journal of Luminescence, 2019,40(8): 1001-1010 DOI: 10.3788/fgxb20194008.1001.
设计了一种由金属Ag和ITO(In
2
O
3
:Sn锡掺氧化铟)薄膜呈周期排布的金属光子晶体(Metal photonic crystals,MPCs)。采用时域有限元差分法(Finite difference time domain,FDTD)计算仿真了周期和周期数对其可见光透光率和反射率的影响规律。研究表明,当金属Ag和ITO组分比一定时,随周期增加,可见光透光率曲线相应变宽,强度降低。当周期数大于4以后,可见光透光率曲线不再随周期数增加而相应变宽。随着入射角度的提高,可见光透光率曲线峰值发生蓝移,宽度相应变宽,强度相应降低。随着Ag膜层层数的增加,可见光透光率的共振峰(透射峰)相应增加。MPCs的可见光透光率峰值与反射率的峰谷具有较好的一一对应关系。
Metal photonic crystals (MPCs) consisting of periodic Ag-ITO multilayers were demonstrated in the paper. The optical transmittance and reflectance of MPCs with different cycle size and number were simulated by finite difference time domain (FDTD) method. It is found that the optical transmittance of the MPCs broadens and the intensity accordingly decreases as the cycle size increasing. For one hand
As the numbers of cycle increasing
the numbers of transmitting resonant peaks correspondingly increase
and the bandwidth of transmittance obviously broadens until the number of cycle reaching to 4. For the other hand
the location of center wavelength evidently blue shifts as the incident angle increasing. At same time
the bandwith of transmittance broadens and the intensity of that distinctly decreases. Meanwhile
the numbers of transmittance peak obviously grow up as the layers of metal films increasing. It is also demonstrated that the location of transmittance peaks and reflectance valley is one to one relationship.
赵亚丽,马富花,江波,等. ITO/Ag光子晶体薄膜的制备及性能[J]. 光学精密工程, 2015,23(6):1516-1512. ZHAO Y L,MA F H,JIANG B,et al.. Preparation and properties of ITO/Ag photonic crystal thin films[J]. Opt. Precision Eng., 2015,23(6):1516-1522. (in Chinese)
ZHAO Y L,MA F H,LI X F,et al.. A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures[J]. Chin. Phys. B, 2018,27(2):027302-1-7.
JENA S,TOKAS R B,SARKAR P,et al.. Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal[J]. Thin Solid Films, 2016,599:138-144.
SHEN H Z,WANG Z H,WU Y X,et al.. One-dimensional photonic crystals:fabrication,responsiveness and emerging applications in 3D construction[J]. RSC Adv., 2016,6(6):4505-4520.
MOSLEMI F,JAMSHIDI-GHALEH K. Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials[J]. J. Appl. Phys., 2016,119(9):093101.
XIAO X Y,CHEN R P. Study of omnidirectional reflection bandgap extension in one-dimensional quasi-periodic metallic photonic crystal[J]. Nano, 2015,10(6):1550088.
叶卫民. 光子晶体导论[M]. 北京:科学出版社, 2010:233-234. YE W M. Introduction Photonic Bandgap Materials[M]. Beijing:Science Press, 2010:233-234. (in Chinese)
SCALORA M,BLOEMER M J,PETHEL A S,et al.. Transparent,metallo-dielectric,one-dimensional,photonic band-gap structures[J]. J. Appl. Phys., 1998,83(5):2377-2383.
BLOEMER M J,SCALORA M. Transmissive properties of Ag/MgF2 photonic band gaps[J]. Appl. Phys. Lett., 1998,72(14):1676-1678.
ELHAJJ A,LUCAS B,CHAKAROUN M,et al.. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by ion beam sputtering for optoelectronic devices[J]. Thin Solid Films, 2012,520(14):4666-4668.
LEE S,BANG S,PARK J,et al.. AZO/Au/AZO multilayer as a transparent conductive electrode[J]. Phys. Status Solidi A, 2012,209(4):698-701.
LEE D H,KIM K,CHUN Y S,et al.. Substitution mechanism of Ga for Zn site depending on deposition temperature for transparent conducting oxides[J]. Curr. Appl. Phys., 2012,12(6):1586-1590.
DING X W,YAN J L,LI T,et al.. Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature[J]. Appl. Surf. Sci., 2012,258(7):3082-3085.
PRADHAN S K,XIAO B,SKUZA J R,et al.. Effects of dielectric thickness on optical behavior and tunability of one-dimensional Ag/SiO2 multilayered metamaterials[J]. Opt. Express, 2014,22(10):12486-12498.
ZHAO Y L,LI X F,MA J J,et al.. Low-resistant and high transmittance films based on one dimensional metal-dielectric photonic band gap material[J]. Superlattice. Microst., 2017,112:596-603.
ZHAO Y L,LI X F,JIA K,et al.. Optical characteristics of one dimensional metal-dielectric photonic band gap material[J]. Opto-Electron. Eng., 2018,45(11):180239-1-8.
OSKOOI A F,ROUNDY D,IBANESCU M,et al.. MEEP:a flexible free-software package for electromagnetic simulations by the FDTD method[J]. Comput. Phys. Commun., 2010,181(3):687-702.
SMITHD R,SCHURIG D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Phys. Rev. Lett., 2003,90(7):077405-1-4.
肖和平,王宇,郭冠军. 制备工艺对ITO薄膜的光电特性影响研究[J]. 光学与光电技术, 2017,15(5):85-90. XIAOH P,WANG Y,GUO G J. Optical and electrical properties of ITO films by process[J]. Opt. Optoelectron. Technol., 2017,15(5):85-90. (in Chinese)
赵亚丽,马富花,吕德涛,等. 直流溅射ITO薄膜光电性能研究[J]. 应用化工, 2013,42(4):634-636. ZHAO Y L,MA F H,L D T,et al.. Properties of ITO films prepared by DC magnetron sputtering[J]. Appl. Chem. Ind., 2013,42(4):634-636. (in Chinese)
LI X F,PENG W,ZHAO Y L,et al.. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index[J]. Chin. Phys. B, 2016,25(3):037303-4.
PENDRYJ B. Calculating photonic band structure[J]. J. Phys.:Condens. Matter, 1996,8(9):1085-1108.
PALIK E D. Handbook of Optical Constants of Solids[M]. New York:Academic Press,1985.
CAI W S,SHALAEV V. Optical Metamaterials[M]. New York:Springer, 2010:123-136.
LIU Y Q,QI X Y,LU Y,et al.. Observation of beam deflection in one-dimensional photonic lattice in LiNbO3 crystal accompanied with self-focusing and self-defocusing nonlinearities[J]. Phys. Lett. A, 2016,380(1-2):322-325.
WOOD B,PENDRY J B,TSAI D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Phys. Rev. B, 2006,74(11):115116-1-8.
BELOV P A,HAO Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime[J]. Phys. Rev. B, 2006,73(11):113110-1-4.
童利民. 纳米光子学研究前沿[M]. 上海:上海交通大学出版社, 2014. TONG L M. Advances in Nanophotonics[M]. Shanghai:Shanghai Jiaotong University Press, 2014. (in Chinese)
赵亚丽,李克训,李旭峰,等. 基于金属光子晶体的透明屏蔽膜[J]. 光学学报, 2015,35(8):0831001-1-8. ZHAO Y L,LI K X,LI X F,et al.. Transparent shielding film based on the metallic photonic crystal[J]. Acta Opt. Sinica, 2015,35(8):0831001-1-8. (in Chinese)
0
浏览量
456
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构