浏览全部资源
扫码关注微信
1. 天津理工大学 显示材料与光电器件教育部重点实验室, 天津 300384
2. 天津市光电显示材料与器件重点实验室, 天津 300384
收稿日期:2017-12-03,
修回日期:2018-01-25,
网络出版日期:2018-02-09,
纸质出版日期:2018-08-05
移动端阅览
刘少伟, 妙亚, 李志成等. ITIC与PVK共掺杂PCBM对钙钛矿太阳能电池性能的影响[J]. 发光学报, 2018,39(8): 1151-1156
LIU Shao-wei, MIAO Ya, LI Zhi-cheng etc. Effect of ITIC and PVK Co-doped PCBM on The Performance of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(8): 1151-1156
刘少伟, 妙亚, 李志成等. ITIC与PVK共掺杂PCBM对钙钛矿太阳能电池性能的影响[J]. 发光学报, 2018,39(8): 1151-1156 DOI: 10.3788/fgxb20183908.1151.
LIU Shao-wei, MIAO Ya, LI Zhi-cheng etc. Effect of ITIC and PVK Co-doped PCBM on The Performance of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(8): 1151-1156 DOI: 10.3788/fgxb20183908.1151.
为了钝化钙钛矿表面的缺陷、改善PCBM溶液的粘度和成膜性以达到优化器件性能的目的,通过引入非富勒烯小分子(ITIC)和富电子聚合物(PVK)共掺杂修饰PCBM薄膜。结果表明:通过调节ITIC的含量可以优化界面形貌,提高器件的性能。当ITIC的质量分数为6%时,获得了最优的器件性能。相比于纯PCBM的器件效率由5.26%提高到9.93%,器件没有回滞现象。ITIC和PVK的引入提高了PCBM的成膜性能。此外,还可以钝化钙钛矿表面的缺陷。这种协同作用有利于电荷传输和分离。综上所述,PVK和ITIC的加入抑制了大气中的水分和氧气,提高了器件的稳定性。
In order to passivate the defects of the perovskite surface and improve the viscosity and film-forming properties of the PCBM solution so as to enhance the performance of device
the non-fullerene acceptor molecules(ITIC) and electron-rich poly(n-vinylcarbazole) (PVK) are used as additives of PCBM film. As a result
the interface morphology and the performance of PCBM are optimized by adjusting the content of ITIC and PVK. The optimal device is obtained when the ITIC content is 6%(mass fraction). Compared with the control device without additives
the power conversion efficiency(PCE) is increased from 5.26% to 9.93%
with no hysteresis. It is found that the introduction of ITIC and PVK improves the film-forming properties of PCBM. Moreover
the surface defect state of perovskite is passivated. The synergy is beneficial to the charge transport and separation. In summary
the addition of PVK and ITIC inhibits the moisture and oxygen in the atmosphere into the device and improves the stability of the device.
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
JENG J Y, CHIANG Y F, LEE M H, et al.. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Adv. Mater., 2013, 25(27):3727-3732.
YANG W S, PARK B W, JUNG E H, et al.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376-1379.
YANG W S, NOH J H, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237.
JIANG Z Y, CHEN X H, LIN X H, et al.. Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode[J]. Sol. Energy Mater. Sol. Cells, 2016, 146:35-43.
LUO H, LIN X H, HOU X, et al.. Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer[J]. Nano-Micro Lett., 2017, 9:39.
XU J, BUIN A, IP A H, et al.. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015, 6:7081.
BAI Y, YU H, ZHU Z, et al.. High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer[J]. J. Mater. Chem. A, 2015, 3(17):9098-9102.
ZHU Z L, XUE Q F, HE H X, et al.. A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance[J]. Adv. Sci., 2015, 3(9):1500353.
DONG S J, WAN Y Y, WANG Y L, et al.. Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells[J]. RSC Adv., 2016, 6(63):57793-57798.
妙亚, 董素娟, 刘少伟, 等. 在电子传输层中添加PVK提高钙钛矿太阳能电池的性能[J]. 发光学报, 2017, 38(9):1210-1216. MIAO Y, DONG S J, LIU S W, et al.. Improving the performance of inverted planar heterojunction perovskite solar cells via poly(n-vinylcarbazole) as additive in electron transporting layer[J]. Chin. J. Lumin., 2017, 38(9):1210-1216. (in English)
ZHAO W, QIAN D, ZHANG S, et al.. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv. Mater., 2016, 28(23):4734-4739.
ABATE A, SALIBA M, HOLLMAN D J, et al.. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Lett., 2014, 14(6):3247-3254.
SHI D, AAINOLFI V, COMIN R, et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519-522.
黄飞, 曹镛. 非富勒烯型聚合物太阳电池取得超过11%的光伏效率[J]. 高分子学报, 2016(4):399-400. HUANG F, CAO Y. Non-fullerene polymer soalr cells achieved more than 11% PV efficiency[J]. Acta Polymerica Sinica, 2016(4):399-400. (in Chinese)
ZHANG Y, XIE T F, JIANG T F, et al.. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices[J]. Nanotechnology, 2009, 20(15):155707-155713.
SUN C, WU Z, YIP H L, et al.. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells[J]. Adv. Energy Mater., 2015, 6:1501534.
0
浏览量
195
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构