浏览全部资源
扫码关注微信
1. 长沙理工大学 化学与生物工程学院,湖南 长沙,410114
2. 湖南省调味品发酵工程技术研究中心, 湖南 长沙 410600
3. 湖南省水生资源食品加工工程技术研究中心,湖南 长沙,410114
收稿日期:2017-11-10,
修回日期:2018-02-12,
网络出版日期:2018-04-08,
纸质出版日期:2018-08-05
移动端阅览
蒋雪薇, 叶菁, 许延涛等. 掺氮碳量子点的微波法制备及其光学性能研究[J]. 发光学报, 2018,39(8): 1075-1081
JIANG Xue-wei, YE Jing, XU Yan-tao etc. Nitrogen Doped Carbon Quantum Dots by Microwave Reaction Production Method and Optical Property[J]. Chinese Journal of Luminescence, 2018,39(8): 1075-1081
蒋雪薇, 叶菁, 许延涛等. 掺氮碳量子点的微波法制备及其光学性能研究[J]. 发光学报, 2018,39(8): 1075-1081 DOI: 10.3788/fgxb20183908.1075.
JIANG Xue-wei, YE Jing, XU Yan-tao etc. Nitrogen Doped Carbon Quantum Dots by Microwave Reaction Production Method and Optical Property[J]. Chinese Journal of Luminescence, 2018,39(8): 1075-1081 DOI: 10.3788/fgxb20183908.1075.
以柠檬酸和谷氨酸为原料、聚乙二醇(PEG)为分散剂,采用微波法制备掺氮碳量子点(N-CQDs)。研究了不同制备条件对N-CQDs结构和性能的影响,利用透射电镜、紫外可见吸收光谱、荧光光谱以及红外光谱对制备产物进行表征,确定了最佳制备条件:柠檬酸80 mg/mL、谷氨酸16 mg/mL,PEG 80 mg/mL,微波反应功率800 W,反应3.5 min。在该条件下制备的N-CQDs具有尺寸均匀、分散性良好及pH敏感性较好的优点;同时具有激发波长依赖性,最大激发波长为340 nm,发射峰为430 nm。此外,红外光谱研究表明,N-CQDs表面含有丰富的羟基和羰基等官能团,水溶性和生物相容性好,在食品快速检测领域具有良好的应用潜力。
Nitrogen doped carbon quantum dots(N-CQDs) were prepared by microwave reaction method with citric acid and glutamic acid as raw materials
polyethylene glycol(PEG) as dispersant. The transmission electron microscopy
ultraviolet visible absorption spectroscopy
fluorescence spectroscopy and infrared spectroscopy were used to research the influences of different preparation factors on the structure and property of N-CQDs. The optimum conditions are shown as follow:80 mg/mL citric acid is blended with 16 mg/mL glutamate and 80 mg/mL PEG then microwaved for 3.5 min at 800 W power condition. The N-CQDs prepared in the optimum conditions are size homogeneous
dispersity well and pH sensitive. Meanwhile
they possess excitation wavelength dependence
the maximal excitation wavelength is 340 nm
and the emission peak moves to 430 nm. Moreover
the study of infrared spectroscopy shows that hydroxy
carbonyl and other functional group abound in the surface of N-CQDs
it causes the great water solubility and biocompatibility. Thus
N-CQDs show a significant application potential in rapid detection of food industry.
刘晓红, 罗金平, 田青, 等. 荧光量子点免疫标记法检测炭疽芽孢杆菌[J]. 分析化学, 2011, 39(2):163-167. LIU X H, LUO J P, TIAN Q, et al.. Detection of bacillus anthracis using fluorescence immunoassay with quantum dots labels[J]. Chin. J. Anal. Chem., 2011, 39(2):163-167. (in Chinese)
姚松坪, 燕荣, 杨少华, 等. 食品中微生物快速检测技术发展概况[J]. 食品研究与开发, 2017, 38(4):194-197. YAO S P, YAN R, YANG S H, et al.. Development situation on rapid detection of food microorganism[J]. Food Res. Develop., 2017, 38(4):194-197. (in Chinese)
马良, 贺亚萍, 张宇昊. 量子点荧光分析法在食品污染物分析中的应用[J]. 食品科学, 2013, 34(21):389-393. MA L, HE Y P, ZHANG Y H. Quantum dot fluorescence analysis in the application of contaminants in food analysis[J]. Food Sci., 2013, 34(21):389-393.(in Chinese)
魏伟, 石星波, 邓放明, 等. 碳量子点合成及其在食品检测中的应用[J]. 食品科学, 2017, 38(15):256-264. WEI W, SHI X B, DENG F M, et al.. Synthesis of carbon dots and its applications in food detection[J]. Food Sci., 2017, 38(15):256-264. (in Chinese)
HU L, SUN Y, LI S, et al.. Multifunctional carbon dots with high quantum yield for imaging and gene delivery[J]. Carbon, 2014, 67:508-513.
SUN D, BAN R, ZHANG P H, et al.. Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64:424-434.
ZHU H, WANG X, LI Y, et al.. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem. Commun., 2009(34):5118-5120.
WANG R J, XU Y, ZHANG T, et al.. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe[J]. Anal. Methods, 2015, 7(5):1701-1706.
QU S, WANG X, LU Q, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angew. Chem. Int. Ed., 2012, 51(49):12215-12218.
LIU W J, YAO J, CHAI H K, et al.. Concentration-dependent effect of photoluminescent carbon dots on the microbial activity of the soil studied by combination methods[J]. Environment. Toxicol. Pharmacol., 2015, 39:857-863.
QIAN Z S, M A J J, SHAN X Y, et al.. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform[J]. Chem. Eur. J., 2014(20):2254-2263.
占霞飞, 唐建设, 吴军. 基于Schiff碱反应的新型碳量子点制备及其影响因素研究[J]. 发光学报, 2016, 37(10):1195-1202. ZHAN X F, TANG J S, WU J. Synthesis and factors of a novel carbon quantum dot based on Schiff's base reaction[J]. Chin. J. Lumin., 2016, 37(10):1195-1202. (in Chinese)
NIU J J, GAO H, WANG L T, et al.. Facile synthesis and optical properties of nitrogen-doped carbon dots[J]. New J. Chem., 2014, 38:1522-1527.
BAKER S, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angew. Chem. Int. Ed., 2010, 49(38):6726-6744.
ZHAI X Y, ZHANG P, LIU C J, et al.. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chem. Commun., 2012, 48:7955-7957.
高雪, 孙靖, 刘晓, 等. 碳量子点的合成、性质及应用[J]. 化工进展, 2017, 36(5):1734-1742. GAO X, SUN J, LIU X, et al.. Carbon quantum dots:synthesis, properties and applications[J]. Chem. Ind. Eng. Prog., 2017, 36(5):1734-1742. (in Chinese)
HU S L, NIU K Y, SUN J, et al.. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J. Mater. Chem., 2009, 19(4):484-488.
CUI Y Y, HU Z B, ZHANG C F, et al.. Simultaneously enhancing up-conversion fluorescence and red-shifting down-conversion luminescence of carbon dots by a simple hydrothermal process[J]. J. Mater. Chem. B, 2014, 2(40):6947-6952.
丁玲, 金玲, 刘茂兰, 等. 荧光碳量子点的水热制备及光谱性能研究[J]. 山东化工, 2015, 44(12):3-6. DING L, JIN L, LIU M L, et al.. Study of hydrothermal preparation and optical properties of fluorescent carbon quantum dots[J]. Shandong Chem. Ind., 2015, 44(12):3-6. (in Chinese)
YU S, ZHENG W, WANG C, et al.. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene[J]. ACS Nano, 2010, 4(12):7619-7629.
JIN X Z, SUN X B, CHEN G, et al.. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells[J]. Carbon, 2015, 81:388-395.
HU S, TRINCHI A, ATKINP, et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angew. Chem. Int. Ed., 2015, 54(10):2970-2974.
ZHU S J, MENG Q N, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew. Chem. Int. Ed., 2013, 52(14):3953-3957.
LI L, WU G, YANG G, et al.. Focusing on luminescent graphene quantum dots:current status and future perspectives[J]. Nanoscale, 2013, 5(10):4015-4039.
邓祥意, 冯雅丽, 李浩然, 等. 生物质焦油制备的碳量子点[J]. 发光学报, 2017, 38(8):1015-1020. DENG X Y, FENG Y L, LI H R, et al.. Synthesis of carbon quantum dots by biomass tar[J]. Chin. J. Lumin., 2017, 38(8):1015-1020. (in Chinese)
ZHAO Q L, ZHANG Z L, HUANG B H, et al.. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem. Commun., 2008(41):5116-5118.
0
浏览量
95
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构