浏览全部资源
扫码关注微信
1. 中国科学院物理研究所 北京凝聚态物理国家实验室 北京,100190
2. 天津工业大学 电气工程与自动化学院 天津,300387
3. 西南科技大学理学院 极端条件物质特性实验室,四川 绵阳,621010
收稿日期:2014-02-24,
修回日期:2014-03-30,
纸质出版日期:2014-06-03
移动端阅览
田海涛, 王禄, 温才等. InAs量子点引入应力对调制掺杂结构中二维电子气输运特性的影响[J]. 发光学报, 2014,35(6): 637-642
TIAN Hai-tao, WANG Lu, WEN Cai etc. Effect of Strain Derived from Embedded InAs Quantum Dots on The Transport Properties of Two-dimensional Gas in Modulation-doped eterostructure[J]. Chinese Journal of Luminescence, 2014,35(6): 637-642
田海涛, 王禄, 温才等. InAs量子点引入应力对调制掺杂结构中二维电子气输运特性的影响[J]. 发光学报, 2014,35(6): 637-642 DOI: 10.3788/fgxb20143506.0637.
TIAN Hai-tao, WANG Lu, WEN Cai etc. Effect of Strain Derived from Embedded InAs Quantum Dots on The Transport Properties of Two-dimensional Gas in Modulation-doped eterostructure[J]. Chinese Journal of Luminescence, 2014,35(6): 637-642 DOI: 10.3788/fgxb20143506.0637.
系统研究了在调制掺杂AlGaAs/GaAs异质结中嵌入InAs量子点后对二维电子气输运特性的影响。使用分子束外延设备生长了量子点层与二维电子气沟道距离(
T
ch
)不同的3个样品,霍尔测试结果表明,二维电子气的电子迁移率和载流子浓度都随
T
ch
的减小而降低。基于几何相位分析算法对部分样品的高分辨透射电镜图像进行了处理,得到了其应变分布图。结果表明,应变主要分布在量子点的周围,并延伸到了量子点的上方。该不均匀的应力场可能是除库伦散射外影响电子迁移率降低的另一个重要因素。
Effect of embedding InAs quantum dots (QDs) on the transport properties of two-dimensional gas (2-DEG) in a modulation-doped AlGaAs/GaAs heterostructure was investigated. Samples with difference thickness (
T
ch
) from QDs layer to 2-DEG were prepared using molecular beam epitaxy. Hall measurements show that the mobility drops dramatically with the decrease of
T
ch
and the electron concentration shows a same trend. Strain distributions have been measured by means of geometric phase analysis of the high-resolution transmission electron microscope images. The results show that the strain is focused in the edges and above of InAs QDs which are resulted from the extended lattice distortion. And the non-uniform strain field could be another key factor for the drop of the mobility besides coulomb scattering.
Huffaker D L, Park G, Zou Z, et al. 1.3 m room-temperature GaAs-based quantum-dot laser [J]. Appl. Phys. Lett., 1998, 73(18):2564-2566.
Blakesley J C, See P, Shields A J, et al. Efficient single photon detection by quantum dot resonant tunneling diodes [J]. Phys. Rev. Lett., 2005, 94(6):0674011-1-4.
Wu D Z, Wang W X, Yang C L, et al. InAs quantum dots with InGaAs cap layer infrared detector grown by MBE [J]. Chin. J. Lumin.(发光学报), 2009, 30(2):209-213 (in Chinese).
Shields A J, Sullivan M P, Farrer I, et al. A two-dimensional electron gas as a sensitive detector for time-resolved tunneling measurements on self-assembled quantum dots [J]. Appl. Phys. Lett., 1999, 5(5):829-833.
Narihiro M, Yusa G, Nakamura Y, et al. Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states [J]. Appl. Phys. Lett., 1996, 70(1):105-107.
Gansen E J, Rowe M A, Greene M B, et al. Photon-number discrimination using a semiconductor quantum dot optically gated field-effect transistor [J]. Nat. Photonics, 2007, 1(5):585-587.
Rowe M A, Gansen E J, Greene M, et al. Transport properties of a quantum dot based optically gated field-effect transistor [J]. Appl. Phys. Lett., 2006, 89(25):2535051-1-4.
Sakaki H, Yusa G, Someya T, et al. Transport-properties of 2-dimensional electron gas in AlGaAs/GaAs selectively doped heterojunctions with embedded InAs dots [J]. Appl. Phys. Lett., 1995, 67(23):3444-3446.
Zhukov A A, Weichsel C, Beyer S, et al. Transport properties of a two-dimensional electron gas in the [JP2]vicinity of quantum dots in the limit of strong disorder [J]. Phys. Rev. B, 2003, 67(12):1253101-1-3.
Kawazu T, Noda T, Kim H, et al. Scattering of 2D electrons by self-organized anti-dots in n-AlGaAs/GaAs heterojunction channels [J]. Phys. Stat. Sol.(b), 2001, 224(3):707-710.
Maximov M V, Tsatsul'nikov A F, Volovik B V, et al. Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors [J]. Phys. Rev. B, 2000, 62(24):16671-16680.
Davies J H. Elastic and piezoelectric fields around a buried quantum dot: A simple picture [J]. J. Appl. Phys., 1998, 84(3):1358-1365.
Htch M J, Snoeck E, Kilaas R, et al. Quantitative measurement of displacement and strain fields from HREM micrographs [J]. Ultramicroscopy, 1998, 74(3):131-146.
He X Q, Wen C, Duan X F, et al. Identification of atomic steps at AlSb/GaAs hetero-epitaxial interface using geometric phase method by high-resolution electron microscopy [J]. Mater. Lett., 2011, 65(3):456-459.
Hessman D, Persson J, Pestol M E, et al. Electron accumulation in single InP quantum dots observed by photoluminescence [J]. Phys. Rev. B, 2001, 64(23):2333081-1-4.
Kim T W, Kim J H. Effects of two-dimensional electron gas on the optical properties of InAs/GaAs quantum dots in modulation-doped heterostructures [J]. Appl. Phys. Lett., 2005, 86(2):0219161-1-3.
Khmissi H, Sfaxi L, Bouzaene L, et al. Effect of carriers transfer behavior on the optical properties of InAs quantum dots embedded in AlGaAs/GaAs heterojunction [J]. J. Appl. Phys., 2010, 107(7):074307-1-5.
Lee H S, Lee J Y, Kim T W, et al. Strain effects in and crystal structures of self-assembled InAs/GaAs quantum dots [J]. Appl. Phys. Lett., 2003, 83(11):2256-2259.
Liu Y M, Xu Z H, Yu Z Y, et al. Strain distribution and electronic structure of self-organized InAs/GaAs quantum dots [J]. J. Nonlinear Opt. Phys. Mater., 2009, 18(4):553-560.
Sears K, Wong-Leung J, Tan H H, et al. A transmission electron microscopy study of defects formed through the capping layer of self-assembled InAs/GaAs quantum dot samples [J]. J. Appl. Phys., 2006, 99(11):1135031-1-4.
Stern F, Sarma S D. Electron energy levels in GaAs-AlGaAs heterojunctions [J]. Phys. Rev. B, 1984, 30(2):840-848.
Daoudi M, Dhifallah I, Ouerghi A, et al. Si-delta doping and spacer thickness effects on the electronic properties in Si-delta-doped AlGaAs/GaAs HEMT structures [J]. Superlatt. Microstruct., 2012, 51(3):497-505.
0
浏览量
99
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构