浏览全部资源
扫码关注微信
沈阳理工大学 理学院,辽宁 沈阳,110159
收稿日期:2014-01-28,
修回日期:2014-02-22,
纸质出版日期:2014-05-03
移动端阅览
沈龙海, 富松, 石广立. 氮化镓纳米粒子的制备及光致发光研究[J]. 发光学报, 2014,35(5): 585-588
SHEN Long-hai, FU Song, SHI Guang-li. Photoluminescence and Synthesis of GaN Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(5): 585-588
沈龙海, 富松, 石广立. 氮化镓纳米粒子的制备及光致发光研究[J]. 发光学报, 2014,35(5): 585-588 DOI: 10.3788/fgxb20143505.0585.
SHEN Long-hai, FU Song, SHI Guang-li. Photoluminescence and Synthesis of GaN Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(5): 585-588 DOI: 10.3788/fgxb20143505.0585.
采用直接氮化法制备出尺寸不同的GaN纳米粒子,分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和光致发光(PL)谱测试手段对所制样品进行表征和发光特性的研究。结果表明:所制备的两种GaN纳米粒子直径分别为100 nm和300 nm左右。在GaN纳米粒子的PL谱中,中心在357 nm的发射源于本征发光,中心在385 nm的发射带源于浅施主能级到价带的辐射复合,中心在560 nm左右的发射带源于浅施主能级到深受主能级间的施主-受主对辐射发光。
GaN nanoparticles with different sizes were prepared by direct nitridation method. The structure
morphology and optical property of the synthesized samples were characterized by XRD
SEM and PL spectra. The diameters of two kinds of GaN nanoparticles are around 100 nm and 300 nm
respectively. The emission at 357 nm can be ascribed to the band-edge emission. The emission band at 385 nm can be ascribed to the radiation recombination from shallow donor level of nitrogen vacancy (V
N
) to valence band. The emission band at around 560 nm can be ascribed to the DAP (Donor-acceptor pair) transition from shallow donor level of nitrogen vacancy (V
N
) to deep acceptor level.
Kang L, Liu B L, Cai J F, et al. Optical properties of silicon-doped InGaN and GaN layers[J].Chin. J. Liq. Cryst. Disp.(液晶与显示), 2004, 19(4):266-269 (in Chinese).[2] Xie L, Gao H G, Chen B, et al. The primary study of superpolishing of LiGaO2 single crystal for a substrate of GaN thin film[J].Opt. Precision Eng.(光学精密工程), 1997, 5(5):57-62 (in Chinese).[3] Alotaibi B, Nguyen H P T, Zhao S, et al. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode[J].Nano Lett., 2013, 13(9):4356-4361.[4] Kibria M G, Nguyen Hieu P T, Cui K, et al. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures[J].ACS Nano, 2013, 7(9):7886-7893.[5] Seong H K, Kim J Y, Kim J J, et al. Room-temperature ferromagnetism in Cu doped GaN nanowires[J].Nano Lett., 2007, 7(11):3366-3371.[6] Pan X J, An X Y, Zhang H J, et al. Optical properties of GaN:Tb nanoparticles synthesized by simple ammonification method[J].Acta Phys.Sinica (物理学报), 2013, 62(3):316-321 (in Chinese).[7] Xu Y P, Lan Y C, Cao Y G, et al. Effects of metal lithium on nanocrystalline gallium nitride under ammonothermal conditions[J].J. Chin. Ceram. Soc.(硅酸盐学报), 2001, 29(4):374-376 (in Chinese).[8] Azuma Y, Shimada M, Okuyama K. Synthesis of monodisperse ultrapure gallium nitride nanoparticles by MOCVD[J].Chem. Vap. Deposition, 2004, 10(1):11-13.[9] Janik J F, Wells R L. Gallium Imide, {Ga(NH)3/2}n, a new polymeric precursor for gallium nitride powders[J].Chem. Mater., 1996, 8(12):2708-2711.[10] Coffer J L, Johnson M A, Zhang L, et al. Influence of precursor route on the photoluminescence of bulk nanocrystalline gallium nitride[J].Chem. Mater., 1997, 9(12):2671-2673.[11] Micic O I, Ahrenkiel S P, Bertram D, et al. Synthesis, structure, and optical properties of colloidal GaN quantum dots[J].Appl. Phys. Lett., 1999, 75(4):478-480.[12] Xu B S, Zhai L Y, Liang J, et al. Synthesis and characterization of high purity GaN nanowires[J].J. Cryst. Growth, 2006, 291(1):34-39.[13] Xiang X, Cao C B, Zhu H S. Catalytic synthesis of single-crystalline gallium nitride nanobelts[J].Solid State Commun., 2003, 126(6):315-318.[14] Sahoo P, Dhara S, Amirthapandian S, et al. Role of surface polarity in self-catalyzed nucleation and evolution of GaN nanostructures[J].Cryst. Growth Des., 2012, 12(5):2375-2381.[15] Kudrawiec R, Nyk M, Syperek M, et al. Photoluminescence from GaN nanopowder: The size effect associated with the surface-to-volume ratio[J].Appl. Phys. Lett., 2006, 88(18): 181916-1-3.[16] Jian J K, Chen X L, Tu Q Y, et al. Preparation and optical properties of prism-shaped GaN nanorods[J].J. Phys. Chem. B, 2004, 108(32):12024-12026.[17] Peng C T, Chen N F, Lin L Y, et al. Photoluminescence of undoped n-type GaN epilayer[J].Chin. J. Semicond.(半导体学报), 2001, 22(4):431-434 (in Chinese).[18] Li X, Peng L F, Huang Q W, et al. Studies of blue emission of n-type GaN[J].Acta Scientiarum Naturalium Universitatis Sunyatseni (中山大学学报, 自然科学版), 2002, 41(1):105-106 (in Chinese).[19] Lai T S, Lin W Z, Mo D. Determination of yellow photoluminescence model in undoped GaN[J].Acta Phys.Sinica (物理学报), 2002, 51(5):1149-1152 (in Chinese).[20] Zhang H X, Ye Z Z, Lu H M, et al. Photoluminescene spectra of GaN epilayer grown on Si substrate[J].Semicond. Optoelectron.(半导体光电), 1999, 20(2):120-122 (in Chinese).[21] Yang Y, Leppert V J, Risbud S H, et al. Blue luminescence from amorphous GaN nanoparticles synthesized in situ in a polymer[J].Appl. Phys. Lett., 1999, 74(16):2262-2264.
0
浏览量
400
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构