浏览全部资源
扫码关注微信
华南理工大学理学院 物理系, 广东 广州 510641
收稿日期:2013-10-29,
修回日期:2013-11-29,
纸质出版日期:2014-03-03
移动端阅览
詹永波, 何磊, 磨俊宇等. 染料掺杂聚合物光纤的荧光及其光谱下转换性质[J]. 发光学报, 2014,35(3): 269-275
ZHAN Yong-bo, HE Lei, MO Jun-yu etc. Fluorescence and Spectral Down-conversion Characterization of Dye-doped Polymer Fibers[J]. Chinese Journal of Luminescence, 2014,35(3): 269-275
詹永波, 何磊, 磨俊宇等. 染料掺杂聚合物光纤的荧光及其光谱下转换性质[J]. 发光学报, 2014,35(3): 269-275 DOI: 10.3788/fgxb20143503.0269.
ZHAN Yong-bo, HE Lei, MO Jun-yu etc. Fluorescence and Spectral Down-conversion Characterization of Dye-doped Polymer Fibers[J]. Chinese Journal of Luminescence, 2014,35(3): 269-275 DOI: 10.3788/fgxb20143503.0269.
为了拓展染料掺杂聚合物光纤的应用范围,利用甲基丙烯酸甲酯(MMA)单体合成了掺有Coumarin 540和Rhodamine 6G两种激光染料的聚甲基丙烯酸甲酯(PMMA)聚合物玻璃棒,并将其拉制成直径约1 000 m的聚合物光纤。以市售LED灯为光源,在侧向照明和前端照明两种条件下分别研究了染料掺杂的聚合物光纤中染料的荧光、荧光传输损耗以及光纤的光谱下转换等性质。两种染料的Stokes波长红移幅度分别达到70 nm和50 nm。在掺杂浓度分别为0.01 mg/g 和 0.04 mg/g时,侧向照明条件下测得两种光纤分别对520 nm和577 nm的荧光的传输损耗为0.336 cm
-1
和0.343 cm
-1
。在前端照明条件下,在光纤输出端获得了较高下转换效率的光谱输出,其转换效率与染料掺杂浓度和光纤长度有关。这种染料掺杂的聚合物光纤有可能与石英玻璃光纤耦合,对其所传输的光进行光谱下转换的光频调控以更好地满足不同的应用需求。
To extend the application of dye-doped polymer fibers
polymethyl methacrylate (PMMA) rods doped with Coumarin 540 and Rhodamine 6G laser dyes were synthesized with methyl methacrylate (MMA)
and drawn to fibers with 1 000 m diameters. The fluorescence and fluorescence transmission loss of the dyes and the spectral down-conversion properties of the dye-doped polymer fibers were studied under side illumination and front surface illumination conditions
where a commercial LED lamp was used as illumination source. The Stokes shifts of these two dyes doped in PMMA matrix were found to be 70 nm and 50 nm
respectively. Under side-illumination condition
0.01 mg/g and 0.04 mg/g dopant concentrations
the transmission loss of the fibers for 520 nm and 577 nm fluorescence were determined to be 0.336 cm
-1
and 0.343 cm
-1
respectively. Under front surface illumination condition
the down-converted spectral outputs from the end of the fibers were observed with high conversion efficiency which was relative with dye concentration and fiber length. The dye-doped polymer fibers are possible coupled with silica fibers to modify the frequencies of the light transmitted by the silica fibers to better satisfy different application requirements.
Tanaka A, Kojima Y. Characterization of radiosensitivity of a plastic fiber scintillator[J]. Polym. J., 1993, 25(4): 407-410. [2] Saito M, Yamamoto K. Bright afterglow illuminator made of phosphorescent material and fluorescent fibers[J]. Appl. Opt., 2000, 39(24):4366-4371. [3] Sheeba M, Thomas K J, Rajesh M, et al. Multimode laser emission from dye doped polymer optical fiber[J]. Appl. Opt., 2007, 46(33):8089-8094. [4] Tagaya A, Teramoto S, Nihei E, et al. High-power and high-gain organic dye-doped polymer optical fiber amplifiers: Novel techniques for preparation and spectral investigation[J]. Appl. Opt., 1997, 36(3):572-578. [5] Tagaya A, Koike Y, Nihei E, et al. Basic performance of an organic dye-doped polymer optical fiber amplifier[J]. Appl. Opt., 1995, 34(6):988-992. [6] Pulido C, Esteban O. Improved fluorescence signal with tapered polymer optical fibers under side-illumination[J]. Sens. Actuat. B, 2010, 146(1):190-194. [7] Tam H Y, Pun C F J, Zhou G, et al. Special structured polymer fibers for sensing applications[J]. Opt. Fiber Technol., 2010, 16(6):357-366. [8] Kruhlak R J, Kuzyk M G. Side-illumination fluorescence spectroscopy. I. Principles[J]. J. Opt. Soc. Am. B: Opt. Phys., 1999, 16(10):1749-1755. [9] De la Rosa-Cruz E, Dirk C W, Rodriguez O, et al. Characterization of fluorescence induced by side illumination of rhodamine B doped plastic optical fibers[J]. Fiber Integ. Opt., 2001, 20(5):457-464. [10] Sheeba M, Rajesh M, Mathew S, et al. Side illumination fluorescence emission characteristics from a dye doped polymer optical fiber under two-photon excitation[J]. Appl. Opt., 2008, 47(11):1913-1921. [11] Pun C F J, Liu Z Y, Tse M L V, et al. Side-illumination fluorescence dye-doped-clad PMMA-core polymer optical fiber: Potential intrinsic light source for biosensing[J]. IEEE Photon. Technol. Lett., 2012, 24(11):960-962. [12] Saito M, Kitagawa K. Axial and radial fluorescence of dye-doped polymer fiber[J]. J. Lightwave Technol., 2001, 19(7):982-987. [13] Kuzyk M G, Paek U C, Dirk G W. Guest-host polymer fibers for nonlinear optics[J]. Appl. Phys. Lett., 1991, 59(8): 902-904. [14] Jiang C H, Kuzyk M G, Ding J L, et al. Fabrication and mechanical behavior of dye-doped polymer optical fiber[J]. J. Appl. Phys., 2002, 92(1):4-12. [15] Peng G D, Xiong Z J, Chu P L. Fluorescence decay and recovery in organic dye-doped polymer optical fibers[J]. J. Lightwave Technol., 1998, 16(12):2365-2372. [16] Liu D J, Duan Q, He X Q, et al. Research on laser medium doped dye[J]. Laser J.(激光杂志), 2002, 23(6): 24-25 (in Chinese).
0
浏览量
146
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构