浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室,吉林 长春,130012
收稿日期:2013-06-12,
修回日期:2013-07-11,
纸质出版日期:2013-08-10
移动端阅览
刘仁俊, 李天天, 杨皓宇, 王连锴, 吕游, 张宝林. 温度对GaSb/GaAs量子点尺寸分布的影响[J]. 发光学报, 2013,34(8): 1011-1016
LIU Ren-jun, LI Tian-tian, YANG Hao-yu, WANG Lian-kai, LYU You, ZHANG Bao-lin. Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2013,34(8): 1011-1016
刘仁俊, 李天天, 杨皓宇, 王连锴, 吕游, 张宝林. 温度对GaSb/GaAs量子点尺寸分布的影响[J]. 发光学报, 2013,34(8): 1011-1016 DOI: 10.3788/fgxb20133408.1011.
LIU Ren-jun, LI Tian-tian, YANG Hao-yu, WANG Lian-kai, LYU You, ZHANG Bao-lin. Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2013,34(8): 1011-1016 DOI: 10.3788/fgxb20133408.1011.
采用低压金属有机物化学气相沉积 (LP-MOCVD) 法制备GaSb/GaAs量子点。通过对不同生长温度的样品进行分析发现温度的变化对GaSb/GaAs量子点的相位角无明显影响
量子点的形状是透镜型。由于量子点特殊的应力分布
可实现量子点的"自限制"生长。量子点的化学势不连续性以及Ostwald熟化机制的影响使得量子点尺寸分布在一定范围内不连续
会出现两种尺寸模式的量子点生长。Sb原子的表面迁移率对GaSb/GaAs量子点生长有较大的影响。升高温度可有效改善量子点的分立性
在升温过程中量子点体现出其熟化过程
高温时表面原子的解析附作用对量子点尺寸和密度的影响较大。
The GaSb/GaAs quantum dots (QDs) were prepared by the technique of low pressure metalorganic chemical vapor deposition (LP-MOCVD). Based on analysis of samples for different growth temperatures
it turns out that the growth temperatures have little contribution to the morphology of GaSb/GaAs QDs and the shape of GaSb/GaAs QDs turns to be lens. The stress distributions between GaSb/GaAs interface lead to the "self-limiting" formation of GaSb QDs. Besides
due to discontinuous chemical potential of QDs
coupled with the effect of curing mechanism of Ostwald
the size distribution of QDs in certain range is discrete and two modes of QDs size appear. The surface mobility of antimony (Sb) adatoms has an important influence on the growth of GaSb/GaAs QDs. The discreteness of QDs can be efficiently improved by raising the growth temperature. With the process of heating up
the curing process of QDs can be presented.
Mowbray D J, Skolnick M S. New physics and devices based on self-assembled semiconductor quantum dots [J]. J. Phys. D: Appl. Phys., 2005, 38(13):2059-2076.[2] Tatebayashi J, Khoshakhlagh A, Huang S H, et al. Lasing characteristics of GaSb/GaAs self-assembled quantum dots [J]. Appl. Phys. Lett., 2007, 90(26):261115-1-3.[3] Lin W H, Tseng C C, Chao K P, et al. High-temperature operation GaSb/GaAs quantum dots infrared photodetectors [J]. IEEE Photon. Technol. Lett., 2011, 23(2):106-108.[4] Kang P, Liu R B, Wang S, et al. Advance in quantum dot solar cells [J]. Chin. J. Power Sources (电源技术), 2011, 35(8):1019-1024 (in Chinese).[5] Seifert W, Carlsson N, Miller M, et al. In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode [J]. Prog. Cryst. Growth Charact., 1996, 33(4):423-471.[6] Daruka I, Barabsi A L. Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium [J]. Phys. Rev. Lett., 1997, 79(19):3708-3711.[7] Chao J, Hiroyuki S. Sb/As intermixing in self-assembled GaSb/GaAs type Ⅱ quantum dot systems and control of their photoluminescence spectra [J]. Phys. E, 2005, 26(4):180-184.[8] Balakrishnan G, Tatebayashi J, Khoshakhlagh A, et al. Ⅲ/Ⅴ ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs [J]. Appl. Phys. Lett., 2006, 89(16):161104-1-3.[9] Kamarudin M A, Hayne M, Zhuang Q D, et al. GaSb quantum dot morphology for different growth temperatures and the different growth temperatures and the dissolution effect of the GaAs capping layer [J]. J. Phys. D: Appl. Phys., 2010, 43(6):065402-1-5.[10] Stringfellow G B, Shurtleff J K, Lee R T, et al. Surface processes in OMVPE the frontiers [J]. J. Cryst. Growth, 2000, 221(4):1-11.[11] Wang J P, Zhou W M, Wang C Y, et al. Morphologies of epitaxial islands on a lattice-misfitted substrate [J]. Chin. Phys. B, 2008, 17(8):3008-3013.[12] Daruka I, Tersoff J, Barabasi A L. Shape transition in growth of strained islands [J]. Phys. Rev. Lett., 1999, 82(13):2753-2756.[13] Ross F M, Tersoff J, Tromp R M. Coarsening of self-assembled Ge quantum dots on Si(001) [J]. Phys. Rev. Lett., 1998, 80(5):984-987.[14] Yang H B, Yu C Y, Liu Y M, et al. Analysis of influencing factor on growth semiconductor quantum dots [J]. J. Synth. Cryst.(人工晶体学报), 2004, 33(6):1018-1021 (in Chinese).[15] Wang T, Forchel A. Growth of self-organized GaSb islands on a GaAs surface by molecular beam epitaxy [J]. J. Appl. Phys., 1999, 85(5):2591-2594.[16] Fu M, Song H, Jiang H, et al. Quantum dots accumulation phenomenon in the growth of mul-tilayer GaSb(QDs)/GaAs and their luminescence property [J]. Chin. J. Lumin.(发光学报), 2010, 31(6):859-863 (in Chinese).[17] Zhou W, Tang W, Lau K M. A strain relief mode at interface of GaSb/GaAs grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2011, 99(22):2219117-1-3.
0
浏览量
184
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构