浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院, 北京 100039
收稿日期:2011-08-29,
修回日期:2011-10-04,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
尤坤, 宋航, 黎大兵, 刘洪波, 李志明, 陈一仁, 蒋红, 孙晓娟, 缪国庆. GaN基MIS紫外探测器的电学及光电特性[J]. 发光学报, 2012,33(1): 55-61
YOU Kun, SONG Hang, LI Da-bing, LIU Hong-bo, LI Zhi-ming, CHEN Yi-ren, JIANG Hong, SUN Xiao-juan, MIAO Guo-qing. Electrical and Optoelectronics Characteristics of GaN Based MIS Photo-detectors[J]. 发光学报, 2012,33(1): 55-61
尤坤, 宋航, 黎大兵, 刘洪波, 李志明, 陈一仁, 蒋红, 孙晓娟, 缪国庆. GaN基MIS紫外探测器的电学及光电特性[J]. 发光学报, 2012,33(1): 55-61 DOI: 10.3788/fgxb20123301.0055.
YOU Kun, SONG Hang, LI Da-bing, LIU Hong-bo, LI Zhi-ming, CHEN Yi-ren, JIANG Hong, SUN Xiao-juan, MIAO Guo-qing. Electrical and Optoelectronics Characteristics of GaN Based MIS Photo-detectors[J]. 发光学报, 2012,33(1): 55-61 DOI: 10.3788/fgxb20123301.0055.
制备了GaN基金属-绝缘层-半导体(MIS)结构紫外探测器
并测量了其暗电流和光谱响应。通过分析其暗电流
发现在反偏情况下
其主要电流输运机制为隧穿复合机制;在正偏情况下
随着偏压的增大
电流输运机制从隧穿机制变为空间电荷限制电流机制。光谱响应测试结果显示
该探测器在-5 V的偏压下
在315 nm处获得了最大响应度170 mA/W
探测度为2.310
12
cmHz
1/2
W
-1
。此外
还研究了不同厚度I层对器件光电压的影响
结果表明
光电压受隧穿机制与漏电流机制的共同制约。
The GaN based metal-insulator-semiconductor (MIS) ultraviolet (UV) photodetectors were fabricated. The dark
I-V
curves and responsivity spectrum of the photodetectors were mea-sured
and the current transport mechanisms were analyzed. By analyzing the current transport mechanics
it was found that the tunneling-recombination mechanism dominated at the reverse bias and with the forward bias increasing
the current transport mechanism changed from tunneling mechanism to space charge limited current (SCLC) mechanism. Under 5 V reverse bias
it was found that the best responsivity and detectivity of the GaN based MIS detector were 170 mA/W and 2.310
12
cmHz
1/2
W
-1
at 315 nm. The photo-voltages of GaN based UV photodetectors of different depth of insulator layers were studied
and it was found that the photo-voltage was limited by the tunneling procedure and leakage current.
Razeghi M, Rogalski A. Semiconductor ultraviolet detectors [J]. J. Appl. Phys., 1996, 79(10):7433-7473.[2] Sawada T, Ito Y, Imai K, et al. Electrical properties of metal/GaN and SiO/GaN interfaces and effects of thermal annealing [J]. Appl. Surf. Sci., 2000, 159-160:449-455.[3] Han Song, Jin Wu, Zhang Daihua, et al. Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination [J]. Chem. Phys. Lett., 2004, 389 (1-3):176-180.[4] Lim B, Chen Q, Yang J, et al. High responsitivity intrinsic photoconductors based on AlGaN [J]. Appl. Phys. Lett., 1996, 68(26):3761-3762.[5] Zhou Mei, Zhao Degang. Effects of structure parameters on the performances of GaN Schottky barrier ultraviolet photodetectors and device design [J]. Chin. J. Lumin.(发光学报), 2009, 30(6):824-831 (in Chinese).[6] Walker D, Monroy E, Kung P, et al. High-speed low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN [J]. Appl. Phys. Lett., 1999, 74(5):762-764.[7] Hickman R, Van Hove J M, Chow P P, et al. GaN pn junction issues and developments [J]. Solid State Electron., 2000, 44(2):377-381.[8] Fu Kai, Yu Guohao, Lu Min. GaN-based detectors for X-ray detector [J]. Chin. J. Lumin. (发光学报), 2011, 32 (7):720-723 (in Chinese).[9] Vennegues P, Benaissa M, Dalmasso S, et al. Influence of high Mg doping on the microstructural and optoelectronic pro-perties of GaN [J]. Mat. Sci. Eng. B-adv., 2002, 93(1-3):224-228.[10] Joshi R P, Dharamsi A N, McAdoo J. Simulation for the high-speed response of GaN metal-semiconductor-metal photodetectors [J]. Appl. Phys. Lett., 1994, 64(26):3611-3613.[11] Monroy E, Calle F, Pau J L, et al. Application and performance of GaN based UV detectors [J]. Phys. Status Solidi. A, 2001, 185 (1):91-97.[12] Carrano J C, Li T, Grudowski P A, et al. Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN [J]. J. Appl. Phys., 1998, 83(11):6148-6160.[13] Auret F D, Goodman S A, Hayes M, et al. Electrical characterization of 1.8 MeV proton-bombarded ZnO [J]. Appl. Phys. Lett., 2001, 79(19):3074-3076.[14] Chini A, Wittich J, Heikman S, et al. Power and linearity characteristics of GaN MISFETs on sapphire substrate [J]. IEEE Electron Device Lett., 2004, 25(2):55-57.[15] Guruvenket S, Ghatak J, Satyam P V, et al. Characterization of bias magnetron-sputtered silicon nitride films [J]. Thin Solid Films, 2005, 478(1-2):256-260.[16] Budaguan B G, Stryahilev D A, Aivazov A A. Optical properties, statistics of bond angle deformations and density of states in Si-rich a-SiN∶H alloys [J]. J. Non-Cryst. Solids., 1997, 210(2-3):267-274.[17] Mei J J, Chen H, Shen W Z. Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films [J]. J. Appl. Phys., 2006, 100(7):073516-1-9.[18] Li W T, McKenzie D R, McFall W D, et al. Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering [J]. Thin Solid Films, 2001, 384(1):46-52.[19] Semsettin A, Adem T, Ilbilge D. Density of interface states, excess capacitance and series resistance in the metal-insulator -semiconductor (MIS) solar cells [J]. Sol. Energ. Mat. Sol. C, 2005, 85(3):345-358.[20] Fedison J B, Chow T P, Lu H, et al. Electrical characteristics of magnesium-doped gallium nitride junction diodes [J]. Appl. Phys. Lett., 1998, 72(22):2841-2843.[21] Gritsenko V A, Nekrashevich S S, Vasilev V V, et al. Electronic structure of memory traps in silicon nitride [J]. Microelectro. Eng., 2009, 86(7-9):1866-1869.[22] Rose A. Space-charge-limited current in solids [J]. Phys. Rev., 1955, 97(6):1538-1544.[23] Shahid A, Vest R E, Franz D, et al. External quantum efficiency of Pt/n-GaN Schottky diodes in the spectral range 5~500 nm [J]. Nucl. Instrum. Meth. A, 2005, 539(1-2):84-92.
0
浏览量
111
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构