
浏览全部资源
扫码关注微信
1. 华南师范大学 光电子材料与技术研究所,广东 广州,510631
2. 深圳大学 材料科学与工程学院,广东 深圳,518060
收稿:2011-04-12,
修回:2010-5-12,
网络出版:2011-08-22,
纸质出版:2011-08-22
移动端阅览
宿世臣, 吕有明. ZnMgO/n-ZnO/ZnMgO/p-GaN 异质结LED的紫外电致发光[J]. 发光学报, 2011,32(8): 821-824
SU Shi-Chen, LV You-Ming. Ultraviolet Electroluminescence of ZnMgO/n-ZnO/ZnMgO/p-GaN Heterojunction Light Emitting Diode[J]. Chinese Journal of Luminescence, 2011,32(8): 821-824
宿世臣, 吕有明. ZnMgO/n-ZnO/ZnMgO/p-GaN 异质结LED的紫外电致发光[J]. 发光学报, 2011,32(8): 821-824 DOI: 10.3788/fgxb20113208.0821.
SU Shi-Chen, LV You-Ming. Ultraviolet Electroluminescence of ZnMgO/n-ZnO/ZnMgO/p-GaN Heterojunction Light Emitting Diode[J]. Chinese Journal of Luminescence, 2011,32(8): 821-824 DOI: 10.3788/fgxb20113208.0821.
利用等离子体辅助分子束外延(P-MBE)技术制备了ZnMgO/n-ZnO/ZnMgO/p-GaN异质结LED。Ni/Au电极与p-GaN、In电极与ZnMgO之间都形成了良好的欧姆接触。在ZnMgO/n-ZnO/ZnMgO/p-GaN异质结器件中观察到了明显的整流特性。异质结的电致发光强度随着注入电流的增大而逐渐增强。室温下在注入电流为20 mA时
电致发光光谱由位于370 nm和 430 nm的两个发光峰构成。通过异质结的电致发光光谱与ZnO和GaN材料的光致发光光谱相比较确认:位于370 nm的发光来源于ZnO的自由激子
这主要是利用了ZnMgO/ZnO/ZnMgO的双异质结结构
这种双异质结结构能够阻挡ZnO中的电子进入GaN中
而GaN中的空穴可以进入到ZnO层中。盖层的ZnMgO作为一个限制层
能够提高载流子的复合效率
从而实现ZnO异质结的室温电致激子发光。
The ZnMgO/n-ZnO/ZnMgO/p-GaN heterojunction LED was fabricated by plasmas assistant molecular beam epitaxy (P-MBE) on GaN substrate. Ni/Au contact to the p-GaN layer and In contact to the n-ZnMgO showed a good ohmic contact behavior. This heterojunction showed a good diode rectifying behaviors with turn-on voltage of 2~3 eV. The EL spectra consist of a strong peak at 370 nm and a weaker broad band centered at 430 nm under the forward current at 20 mA. It concluded the 370 nm emission belong to ZnO free exciton recombination
and the 430 nm emission to the defect of GaN substrates by comparing with the PL spectra of ZnO and GaN. By observing the ZnO free exciton emission in ZnMgO/n-ZnO/ ZnMgO/p-GaN
the heterojunctions could be attributed to the double heterojunction structures. The double heterojunctions could block the electrons of ZnO from passing across the ZnMgO layer and entering into the GaN layer. As for holes
the barrier height that hinders the holes in p-GaN from entering into the ZnO is much smaller.
Bagall D M, Chen Y F, Zhu Z. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70 (17):2230-2232.[2] Look D C, Reynolds D C, Litton C W, et.al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002, 81 (10):1830-1832 .[3] Kim K K, Kim H S, Hwang D K, et.al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett., 2003, 83 (1):63-65.[4] Chen Zuhong, Yao Bin, Zheng Changji, et al. Formation mechanism and properties of In, P codoped p-type ZnO thin film [J]. Chin. J. Lumin. (发光学报), 2009, 30 (1):12-18 (in English).[5] Gao Shuxia, Wang Deyi. Influence of annealing temperature on structure and optical properties of Na-doped ZnO thin films prepared by sol-gel method [J]. Chin. J. Lumin. (发光学报), 2009, 30 (1):81-85 (in Chinese).[6] Lin Lan, Ye Zhizhen, Gong Li, et al. Fabrication of Na-N codoped p-type ZnO films by RF reaction magnetron sputtering and post annealing [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):199-203 (in Chinese).[7] Tsukazaki A, Onuma T, Ohtani M, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4 (1):42-46.[8] Jiao Shujie, Zhang Zhenzhong, Lu Youming, et. al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88 (3):031911-1-3.[9] Alivov Y, Nostrand J E V, Look D C, et.al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83 (18):2943-2945.[10] Alivov Y, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Appl. Phys. Lett., 2003, 83 (23):4719-4721.[11] Jiao Shujie, Zhang Zhenzhong, Lu Youming, et al. n-ZnO/i-MgO/p-GaN heterojunction light-emitting diodes [J]. Chin. J. Lumin. (发光学报), 2006, 27 (4):499-502 (in Chinese).[12] You J B, Zhang X W, Zhang S G, et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2010, 96 (20):201102-1-4.[13] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a Ⅱ-Ⅳ widegap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72 (19):2466-2468.
0
浏览量
112
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621